
WebRTC

Ilya Grigorik - @igrigorik
Make The Web Fast
Google

Building Faster Websites
crash course on web performance

@igrigorik

HTML

CSS

DOM

CSSOM

JavaScript
Render

Tree
Layout PaintNetwork

Critical rendering path

In-app performance

Web performance in one slide...

Twitter @igrigorik
 G+ gplus.to/igrigorik
 Web igvita.com

Thanks. Questions?

http://twitter.com/igrigorik
http://gplus.to/igrigorik
http://www.igvita.com/

@igrigorik

HTML

CSS

DOM

CSSOM

JavaScript
Render

Tree
Layout PaintNetwork

Critical rendering path: resource loading

In-app performance: CPU + Render

2

3

1

Latency,
bandwidth
3G / 4G / ...

What's the impact of slow sites?
Lower conversions and engagement, higher bounce rates...

Performance Related Changes and their User Impact

server delays experiment

● Strong negative impacts
● Roughly linear changes with increasing delay
● Time to Click changed by roughly double the delay

"2000 ms delay
reduced per user
revenue by 4.3%!"

http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx
http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx

Impact of 1-second delay - Strangeloop

Impact of 1-second delay...

http://www.strangeloopnetworks.com/resources/infographics/web-performance-and-ecommerce/impact-of-1-second-delay/
http://www.strangeloopnetworks.com/resources/infographics/web-performance-and-ecommerce/impact-of-1-second-delay/

Yo ho ho and a few billion pages of RUM

How speed affects bounce rate

@igrigorik

http://www.slideshare.net/joshfraz/sept-2012rumtalk
http://www.slideshare.net/joshfraz/sept-2012rumtalk

Using site speed in web search ranking

Site speed is a signal for search

@igrigorik

"We encourage you to start
looking at your site's speed
— not only to improve your
ranking in search engines,
but also to improve
everyone's experience on
the Internet."

Google Search Quality Team

http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html
http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html
http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html

Speed is a feature.

So, how are we doing today?
Okay, I get it, speed matters... but, are we there yet?

@igrigorik

"1000 ms time to
glass challenge"

Delay User reaction

0 - 100 ms Instant

100 - 300 ms Slight perceptible delay

300 - 1000 ms Task focus, perceptible delay

1 s+ Mental context switch

10 s+ I'll come back later...

● Simple user-input must be acknowledged within ~100 milliseconds.
● To keep the user engaged, the task must complete within 1000 milliseconds.

 Ergo, our pages should render within 1000 milliseconds.

Speed, performance and human perception

http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#ANATOMY_OF_WEB_APPLICATION
http://chimera.labs.oreilly.com/books/1230000000545/ch10.html#ANATOMY_OF_WEB_APPLICATION

HTTP Archive

Content Type
Desktop Mobile

Avg # of requests Avg size Avg # of requests Avg size

HTML 10 56 KB 6 40 KB

Images 56 856 KB 38 498 KB

Javascript 15 221 KB 10 146 KB

CSS 5 36 KB 3 27 KB

Total 86+ 1169+ KB 57+ 711+ KB

Our applications are complex, and growing...

Ouch!

http://httparchive.org/trends.php#bytesTotal&reqTotal
http://httparchive.org/trends.php#bytesTotal&reqTotal

Is the web getting faster? - Google Analytics Blog

Desktop: ~3.1 s
Mobile: ~3.5 s

@igrigorik

"It’s great to see access
from mobile is around
30% faster compared to
last year."

http://analytics.blogspot.com/2013/04/is-web-getting-faster.html
http://analytics.blogspot.com/2013/04/is-web-getting-faster.html

Great, network will save us?
Right, right? We can just sit back and...

Average connection speed in Q4 2012: 5000 kbps+

State of the Internet - Akamai - 2007-2012

http://www.akamai.com/stateoftheinternet/
http://www.akamai.com/stateoftheinternet/

Fiber-to-the-home services provided 18 ms round-trip latency on average, while cable-based services
averaged 26 ms, and DSL-based services averaged 43 ms. This compares to 2011 figures of 17 ms for
fiber, 28 ms for cable and 44 ms for DSL.

Measuring Broadband America - July 2012 - FCC @igrigorik

http://www.fcc.gov/measuring-broadband-america/2012/july
http://www.fcc.gov/measuring-broadband-america/2012/july

Worldwide: ~100 ms
US: ~50~60 ms

Average RTT to Google in 2012 was...

Latency vs. Bandwidth impact on Page Load Time

Average household in is running on a 5 Mbps+ connection. Ergo, average consumer would not see
an improvement in page loading time by upgrading their connection. (doh!)

Bandwidth doesn't matter (much) - Google @igrigorik

Single digit % perf
improvement after
5 Mbps

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2
https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2

Bandwidth doesn't matter (much)

● Improving bandwidth is "easy"...
○ 60% of new capacity through upgrades in past decade + unlit fiber
○ "Just lay more fiber..."

● Improving latency is expensive... impossible?
○ Bounded by the speed of light - oops!
○ We're already within a small constant factor of the maximum
○ "Shorter cables?"

$80M / ms

Latency is the new Performance Bottleneck @igrigorik

http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/

Mobile, oh Mobile...

"Users of the Sprint 4G network can expect to experience average speeds of 3 Mbps to 6 Mbps
download and up to 1.5 Mbps upload with an average latency of 150 ms. On the Sprint 3G
network, users can expect to experience average speeds of 600 Kbps - 1.4 Mbps download and
350 Kbps - 500 Kbps upload with an average latency of 400 ms."

@igrigorik

3G 4G

Sprint 150 - 400 ms 150 ms

AT&T 150 - 400 ms 100 - 200 ms

AT&T

http://www.att.com/esupport/article.jsp?sid=64785#fbid=mXPoLdNrqYR
http://www.att.com/esupport/article.jsp?sid=64785#fbid=mXPoLdNrqYR

Why are mobile latencies so high?
... and variable?

● Control over network performance and resource allocation
● Ability to manage 10~100's of active devices within single cell
● Coverage of much larger area

Design constraint #1: "Stable" performance + scalability

● Radio is the second most expensive component (after screen)
● Limited amount of available power (as you are well aware)

Design constraint #2: Maximize battery life

Radio Resource Controller

● Phone: Hi, I want to transmit data, please?
● RRC: OK.

■ Transmit in [x-y] timeslots
■ Transmit with Z power
■ Transmit with Q modulation

... (some time later) ...

● RRC: Go into low power state.

RRC

All communication and power
management is centralized and
managed by the RRC.

High Performance Browser Networking: Mobile Networks

http://chimera.labs.oreilly.com/books/1230000000545/ch07.html
http://chimera.labs.oreilly.com/books/1230000000545/ch07.html

3G / 4G Control and User plane latencies

RRC

I want to
send data! 1

2
1-X RTT's of
negotiations

3
Application
data

Control-plane latency User-plane latency

 LTE HSPA+ 3G

Idle to connected latency < 100 ms < 100 ms < 2.5 s

User-plane one-way latency < 5 ms < 10 ms < 50 ms

● There is a one time cost for control-plane
negotiation

● User-plane latency is the one-way latency between
packet availability in the device and packet at the
base station

Same process happens for incoming data, just reverse steps 1 and 2

Inbound packet flow

LTE HSPA+ HSPA EDGE GPRS

AT&T core
network latency 40-50 ms 50-200 ms 150-400 ms 600-750 ms 600-750 ms

... all that to send a single TCP packet?

Why is latency the bottleneck?
... what's the relationship between latency and bandwidth?

TCP Congestion Control & Avoidance...
● TCP is designed to probe the network to figure out the available capacity
● TCP does not use full bandwidth capacity from the start!

@igrigorik

TCP Slow Start is a feature, not a bug.

Congestion Avoidance and Control

http://chimera.labs.oreilly.com/books/1230000000545/ch02.html#CONGESTION_AVOIDANCE_AND_CONTROL
http://chimera.labs.oreilly.com/books/1230000000545/ch02.html#CONGESTION_AVOIDANCE_AND_CONTROL

The (short) life of a web request

@igrigorik

● (Worst case) DNS lookup to resolve the hostname to IP address
● (Worst case) New TCP connection, requiring a full roundtrip to the server
● (Worst case) TLS handshake with up to two extra server roundtrips!

● HTTP request, requiring a full roundtrip to the server
● Server processing time

Let's fetch a 20 KB file via a low-latency link (IW4)...

● 5 Mbps connection
● 56 ms roundtrip time (NYC > London)
● 40 ms server processing time

@igrigorikCongestion Avoidance and Control

Plus DNS and TLS roundtrips

4 roundtrips, or 264 ms!

http://chimera.labs.oreilly.com/books/1230000000545/ch02.html#CONGESTION_AVOIDANCE_AND_CONTROL
http://chimera.labs.oreilly.com/books/1230000000545/ch02.html#CONGESTION_AVOIDANCE_AND_CONTROL

3G (200 ms RTT) 4G (100 ms RTT)

Control plane (200-2500 ms) (50-100 ms)

DNS lookup 200 ms 100 ms

TCP Connection 200 ms 100 ms

TLS handshake (optional) (200-400 ms) (100-200 ms)

HTTP request 200 ms 100 ms

Total time 800 - 4100 ms 400 - 900 ms

Anticipate network latency overhead

Let's fetch a 20 KB file via a 3G / 4G link...

x4 (slow start)

One 20 KB HTTP request!

http://chimera.labs.oreilly.com/books/1230000000545/ch08.html#MOBILE_NETWORK_LATENCY_OVERHEAD
http://chimera.labs.oreilly.com/books/1230000000545/ch08.html#MOBILE_NETWORK_LATENCY_OVERHEAD

Not so good news everybody!
HSPA+ will be the dominant
network type of the next decade!

● Latest HSPA+ releases are
comparable to LTE in performance

● 3G networks will be with us for at
least another decade

● LTE adoption in US and Canada is
way ahead of the world-wide trends

4G Americas - Statistics

http://www.4gamericas.org/index.cfm?fuseaction=page§ionid=117
http://www.4gamericas.org/index.cfm?fuseaction=page§ionid=117

HTML

CSS

DOM

CSSOM

JavaScript
Render

Tree
Layout PaintNetwork

Latency is the bottleneck for web performance
○ Lots of small transfers
○ New TCP connections are expensive
○ High latency overhead on mobile networks

 ... in short: no, the network won't save us.

Network optimization tips?
Glad you asked... :-)

● Optimize your TCP server stacks
● Optimize your TLS deployment
● Optimizing for wireless networks
● Optimizing for HTTP 1.x quirks
● Migrating to HTTP 2.0
● XHR, SSE, WebSocket, WebRTC, ...

TCP, TLS, mobile / wireless and HTTP best practices...

http://bit.ly/fluent-hpbn
</shameless self promotion>

http://bit.ly/fluent-hpbn
http://bit.ly/fluent-hpbn

Application

HTTP 1.x - 2.0

TLS
TCP

● How Wi-Fi + 3G/4G works
● RRC + battery life optimization
● Data bursting, prefetching
● Inefficiency of periodic transfers
● Intermittent connectivity
●

RadioWired

Wi-Fi Mobile
2G, 3G, 4G

http://bit.ly/fluent-hpbn

http://bit.ly/io-radioup

http://bit.ly/fluent-hpbn
http://bit.ly/fluent-hpbn
http://bit.ly/io-radioup
http://bit.ly/io-radioup

Application

HTTP 1.x - 2.0

TLS
TCP

● Upgrade kernel: Linux 3.2+
● IW10 + disable slow start after idle
● TCP window scaling
● Position servers closer to the user
● Reuse established TCP connections
● Compress transferred data
●RadioWired

Wi-Fi Mobile
2G, 3G, 4G

http://bit.ly/fluent-hpbn

http://bit.ly/fluent-hpbn
http://bit.ly/fluent-hpbn

Application

HTTP 1.x - 2.0

TLS
TCP

● Upgrade TLS libraries
● Use session caching / session tickets
● Early TLS termination (CDN)
● Optimize TLS record size
● Optimize certificate size
● Disable TLS compression
● Configure SNI support
● Use HTTP Strict Transport Security
●

RadioWired

Wi-Fi Mobile
2G, 3G, 4G

http://bit.ly/fluent-hpbn

http://bit.ly/fluent-hpbn
http://bit.ly/fluent-hpbn

Application

HTTP 1.x - 2.0

TLS
TCP

HTTP 1.x hacks and best practices:

● Concatenate files (CSS, JS)
● Sprite small images
● Shard assets across origins
● Minimize protocol overhead
● Inline assets
● Compress (gzip) assets
● Cache assets!
●

RadioWired

Wi-Fi Mobile
2G, 3G, 4G

http://bit.ly/fluent-hpbn

http://bit.ly/fluent-hpbn
http://bit.ly/fluent-hpbn

Application

HTTP 1.x - 2.0

TLS
TCP

HTTP 2.0 to the rescue!

● Undo HTTP 1.x hacks... :-)
● Unshard your assets
● Leverage server push
●RadioWired

Wi-Fi Mobile
2G, 3G, 4G

http://bit.ly/fluent-hpbn

(more on this in a second)

http://bit.ly/fluent-hpbn
http://bit.ly/fluent-hpbn

Application

HTTP 1.x - 2.0

TLS
TCP

● XMLHttpRequest do's and don'ts
● Server-Sent Events
● WebSocket
● WebRTC

○ DataChannel - UDP in the browser!

RadioWired

Wi-Fi Mobile
2G, 3G, 4G

http://bit.ly/fluent-hpbn

http://bit.ly/fluent-hpbn
http://bit.ly/fluent-hpbn

HTML

CSS

DOM

CSSOM

JavaScript
Render

Tree
Layout PaintNetwork

Foundation of your performance strategy.

Get it right!

Let's (briefly) talk about HTTP 2.0
Will it fix all things? No, but many...

 ... we’re not replacing all of HTTP — the methods, status codes, and most
of the headers you use today will be the same. Instead, we’re re-defining
how it gets used “on the wire” so it’s more efficient, and so that it is
more gentle to the Internet itself

- Mark Nottingham

● New binary framing
● One connection (session)
● Many parallel requests (streams)
● Header compression
● Stream prioritization
● Server push

HTTP 2.0 in a nutshell...

@igrigorikHigh performance browser networking: HTTP 2.0

http://chimera.labs.oreilly.com/books/1230000000545/ch12.html
http://chimera.labs.oreilly.com/books/1230000000545/ch12.html

Newsflash: we are already using "server push"

● Today, we call it "inlining" (to be exact it's "forced push")
● Inlining works for unique resources, bloats pages otherwise

What's HTTP server push?

Premise: server can push multiple resources in response to one request

● What if the client doesn't want the resource?
○ Client can cancel stream if it doesn't want the resource

● Resource goes into browsers cache
○ HTTP 2.0 server push does not have an application API (JavaScript)

@igrigorikHigh performance browser networking: HTTP 2.0

http://chimera.labs.oreilly.com/books/1230000000545/ch12.html
http://chimera.labs.oreilly.com/books/1230000000545/ch12.html

● Chrome, since forever..
○ Chrome on Android + iOS

● Firefox 13+
● Opera 12.10+

Server
● mod_spdy (Apache)
● nginx
● Jetty, Netty
● node-spdy
● ...

How do I use HTTP 2.0 today? Use SPDY...

3rd parties
● Twitter
● Wordpress
● Facebook

● Akamai
● Contendo
● F5 SPDY Gateway
● Strangeloop
● ...

All Google properties
● Search, GMail, Docs
● GAE + SSL users
● ...

@igrigorik

● Q: Do I need to modify my site to work with SPDY / HTTP 2.0?
● A: No. But you can optimize for it.

● Q: How do I optimize the code for my site or app?
● A: "Unshard", stop worrying about silly things (like spriting, etc).

● Q: Any server optimizations?
● A: Yes!

○ CWND = 10
○ Check your SSL certificate chain (length)
○ TLS resume, terminate SSL connections closer to the user
○ Disable TCP slow start on idle

● Q: Sounds complicated...
● A: mod_spdy, nginx, GAE!

HTTP 2.0 / SPDY FAQ

@igrigorik

Measuring network performance
Real users, on real networks, with real devices...

Navigation Timing (W3C)

Navigation Timing spec @igrigorik

http://test.w3.org/webperf/specs/NavigationTiming/
http://test.w3.org/webperf/specs/NavigationTiming/

Navigation Timing (W3C)

@igrigorik

Available in...

● IE 9+
● Firefox 7+
● Chrome 6+
● Android 4.0+

@igrigorik

 <script>
 _gaq.push(['_setAccount','UA-XXXX-X']);
 _gaq.push(['_setSiteSpeedSampleRate', 100]); // #protip
 _gaq.push(['_trackPageview']);
 </script>

Google Analytics > Content > Site Speed

● Automagically collects this data for you - defaults to 1% sampling rate
● Maximum sample is 10k visits/day
● You can set custom sampling rate

You have all the power of Google Analytics! Segments, conversion metrics, ...

Real User Measurement (RUM) with Google Analytics

setSiteSpeedSampleRate docs @igrigorik

https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_gat.GA_Tracker_._setSiteSpeedSampleRate
https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_gat.GA_Tracker_._setSiteSpeedSampleRate

Performance
data from real
users, on real
networks

@igrigorik

Full power of GA to
segment, filter,
compare, ...

@igrigorik

Head into the Technical
reports to see the histograms
and distributions!

Averages are misleading...

@igrigorik

Content > Site Speed > Page Timings > Performance

Migrated site to new host, server stack, web layout, and using static
generation. Result: noticeable shift in the user page load time distribution.

Case study: igvita.com page load times

Measuring Site Speed with Navigation Timing @igrigorik

http://www.igvita.com/2012/04/04/measuring-site-speed-with-navigation-timing/
http://www.igvita.com/2012/04/04/measuring-site-speed-with-navigation-timing/

Content > Site Speed > Page Timings > Performance

Bimodal response time distribution?
Theory: user cache vs. database cache vs. full recompute

Case study: igvita.com server response times

Measuring Site Speed with Navigation Timing @igrigorik

http://www.igvita.com/2012/04/04/measuring-site-speed-with-navigation-timing/
http://www.igvita.com/2012/04/04/measuring-site-speed-with-navigation-timing/

Measure, analyze, optimize, repeat...

1. Measure user perceived network latency with Navigation Timing
2. Analyze RUM data to identify performance bottlenecks
3. Use GA's advanced segments (or similar solution)
4. Setup {daily, weekly, ...} reports

Twitter @igrigorik
 G+ gplus.to/igrigorik
 Web igvita.com

10m break... Questions?

http://twitter.com/igrigorik
http://gplus.to/igrigorik
http://www.igvita.com/

@igrigorik

HTML

CSS

DOM

CSSOM

JavaScript
Render

Tree
Layout PaintNetwork

Critical rendering path: resource loading2

What's the "critical" part?
To answer that, we need to peek inside the browser...

Let's try a simple example...

<!doctype html>
<meta charset=utf-8>
<title>Performance!</title>

<link href=styles.css rel=stylesheet />

<p>Hello world!</p>

● Simple (valid) HTML file
● External CSS stylesheet

What could be simpler, right?

@igrigorik

 p { font-weight: bold; }
 span { display: none; }

index.html

styles.css

HTML bytes are arriving on the wire...

<!doctype html>
<meta charset=utf-8>
<title>Performance!</title>

<link href=styles.css rel=stylesheet />

<p>Hello world!</p>

● first response packet with index.html bytes
● we have not discovered the CSS yet...

@igrigorik

 p { font-weight: bold; }
 span { display: none; }

index.html

styles.css
CSS

DOM

CSSOM

Render
Tree

Network

HTML

We're splitting packets for convenience...

The HTML5 parser at work...

Tokenizer

TreeBuilder

Bytes

Characters

Tokens

Nodes

DOM

<p>Hello world!</p>

StartTag: p Hello, StartTag: span world! EndTag: span

body Hello span world!

body

Hello,

span

world!

3C 62 6F 64 79 3E 48 65 6C 6C 6F 2C 20 3C 73 70 61 6E 3E 77 6F 72 6C 64 21 3C 2F 73 70 61 6E 3E
3C 2F 62 6F 64 79 3E

DOM is constructed
incrementally, as the bytes
arrive on the "wire".

@igrigorik

p

DOM construction is complete... waiting on CSS!

<!doctype html>
<meta charset=utf-8>
<title>Performance!</title>

<link href=styles.css rel=stylesheet />

<p>Hello world!</p>

@igrigorik

 p { font-weight: bold; }
 span { display: none; }

index.html

styles.css
CSS

DOM

CSSOM

Render
Tree

Network

HTML DOM

● screen is empty, blocked on CSS
○ otherwise, flash of unstyled content (FOUC)

● <link> discovered, network request sent
● DOM construction complete!

First CSS bytes arrive... still waiting on CSS!

<!doctype html>
<meta charset=utf-8>
<title>Performance!</title>

<link href=styles.css rel=stylesheet />

<p>Hello world!</p>

@igrigorik

 p { font-weight: bold; }
 span { display: none; }

index.html

styles.css

DOM

CSSOM

Render
Tree

Network

HTML DOM

● Unlike HTML parsing, CSS is not incremental

● First CSS bytes arrive
● But, we must wait for the entire file...

CSS

Finally, we can construct the CSSOM!

<!doctype html>
<meta charset=utf-8>
<title>Performance!</title>

<link href=styles.css rel=stylesheet />

<p>Hello world!</p>

@igrigorik

 p { font-weight: bold; }
 span { display: none; }

index.html

styles.css

DOM

CSSOM

Render
Tree

Network

HTML DOM

● CSS download has finished - yay!
● We can now construct the CSSOM

CSS CSSOM

 still blank :(

DOM + CSSOM = Render Tree(s)

@igrigorik

body

Hello

span

world!

root

spanp

D
O

M
CS

SO
M

p ● Match CSSOM to DOM nodes
● Yes, the screen is still empty....

DOM + CSSOM = Render Tree(s)

@igrigorik

body

Hello

span

world!

root

spanp

D
O

M
CS

SO
M

p

● is not part of render tree!
○ "display: none"

body

Hello

p

Render Tree

DOM + CSSOM = Render*

@igrigorik

@igrigorik

HTML

CSS

DOM

CSSOM

Render
Tree

Layout PaintNetwork

Critical rendering path

Hello● Once render tree is ready, perform layout
○ aka, compute size of all the nodes, etc

● Once layout is complete, render pixels to the screen!

Performance rules to keep in mind...

(1) HTML is parsed incrementally
(3) Rendering is blocked on CSS...

Which means...

(1) Stream the HTML response to the client
○ Don't wait to render the full HTML file - flush early, flush often.

(2) Get CSS down to the client as fast as you can
○ Blank screen until we have the render tree ready!

Err, wait. Did we forget something?
How about that JavaScript thing...

DOM

CSSOM

Network

JavaScript... our friend and foe.

<!doctype html>
<meta charset=utf-8>
<title>Performance!</title>

<script src=application.js></script>
<link href=styles.css rel=stylesheet />

<p>Hello world!</p>

@igrigorik

 p { font-weight: bold; }
 span { display: none; }

index.html

styles.css

HTML DOM

In some ways, JS is similar to CSS, except ...

CSS CSSOM

JavaScript elem.style.width = "500px"

JavaScript can query (and modify) DOM, CSSOM!

JavaScript can modify the DOM and CSSOM...

 Hello world! Tokenizer TreeBuilder

document.write("cruel");

Script execution can change the input stream. Hence we must wait.

@igrigorik

● DOM construction can't proceed until JavaScript is fetched *
● DOM construction can't proceed until JavaScript is executed *

<script> could doc.write, stop the world!

Sync scripts block the parser...

 <script type="text/javascript"
 src="https://apis.google.com/js/plusone.js"></script>

<script type="text/javascript">

 (function() {

 var po = document.createElement('script'); po.type = 'text/javascript';

 po.async = true; po.src = 'https://apis.google.com/js/plusone.js';

 var s = document.getElementsByTagName('script')[0];

 s.parentNode.insertBefore(po, s);

 })();

</script>

Sync script will block the DOM + rendering of your page:

Async script will not block the DOM + rendering of your page:

@igrigorik

Async all the things!

<script src="file-a.js"></script>
<script src="file-c.js" async></script>

● regular - block on HTTP request, parse, execute, proceed
● async - download in background, execute when ready

@igrigorik

JavaScript performance pitfalls...

<script>

 var old_width = elem.style.width;
 elem.style.width = "300px";

 document.write("I'm awesome")

</script>

● JavaScript can query CSSOM
● JavaScript can block on CSS
● JavaScript can modify CSSOM

● JavaScript can query DOM
● JavaScript can block DOM construction
● JavaScript can modify DOM

application.js

(1) Stream the HTML to the client
○ Allows early discovery of dependent resources (e.g. CSS / JS / images)

(2) Get CSS down to the client as fast as you can
○ Unblocks paints, removes potential JS waiting on CSS scenario

(3) Use async scripts, avoid doc.write
○ Faster DOM construction, faster DCL and paint!
○ Do you need scripts in your critical rendering path?

HTML

CSS

DOM

CSSOM

Render
Tree

Layout PaintNetwork

Critical rendering path

JavaScript

Rendering path optimization?
Theory in practice...

Breaking the 1000 ms time to glass mobile barrier... hard facts:

1. Majority of time is in network overhead
○ Especially for mobile! Refer to our earlier discussion...

2. Fast server processing time is a must
○ Ideally below 100 ms

3. Must allocate time for browser parsing and rendering
○ Reserve at least 100 ms of overhead

Therefore...

Breaking the 1000 ms time to glass mobile barrier... implications:

1. Inline just the required resources for above the fold
○ No room for extra requests... unfortunately!
○ Identify and inline critical CSS
○ Eliminate JavaScript from the critical rendering path

2. Defer the rest until after the above the fold is visible
○ Progressive enhancement...

3. ...
4. Profit

<html>

<head>
 <link rel="stylesheet" href="all.css">
 <script src="application.js"></script>
</head>

<body>
 <div class="main">
 Here is my content.
 </div>
 <div class="leftnav">
 Perhaps there is a left nav bar here.
 </div>
 ...
</body>
</html>

1. Split all.css, inline critical styles
2. Do you need the JS at all?

○ Progressive enhancement
○ Inline critical JS code
○ Defer the rest

<html>
<head>

 <style>
 .main { ... }
 .leftnav { ... }
 /* ... any other styles needed for the initial render here ... */
 </style>

 <script>
 // Any script needed for initial render here.
 // Ideally, there should be no JS needed for the initial render
 </script>

</head>
<body>
 <div class="main">
 Here is my content.
 </div>
 <div class="leftnav">
 Perhaps there is a left nav bar here.
 </div>

 <script>
 function run_after_onload() {

 load('stylesheet', 'remainder.css')
 load('javascript', 'remainder.js')
 }
 </script>

</body>
</html>

Above the fold CSS

Above the fold JS
(ideally, none)

Paint the above the fold,
then fill in the rest

A few tools to help you...
How do I find "critical CSS" and my critical rendering path?

@igrigorik

Identify critical CSS via an Audit

DevTools > Audits > Web Page Performance

Another fun tool: http://css.benjaminbenben.com/v1?url=http://www.igvita.com/

http://css.benjaminbenben.com/v1?url=http://www.igvita.com/

guardian.co.uk

Full Waterfall

Critical Path

Critical Path Explorer extracts the
subtree of the waterfall that is in the
"critical path" of the document
parser and the renderer.

(webpagetest run)

@igrigorik

https://developers.google.com/speed/pagespeed/insights#url=www.guardian.co.uk&mobile=false&rule=____critical__path
http://www.webpagetest.org/result/130527_WE_2b2d2d63f3faccffa39f52b2ec421a89/

300 ms redirect!

@igrigorik

DCL.. no defer

300 ms redirect!

JS execution
blocked on CSS

@igrigorik

300 ms redirect!

JS execution
blocked on CSS

doc.write() some
JavaScript - doh!

@igrigorik

300 ms redirect!

JS execution
blocked on CSS

doc.write() some
JavaScript - doh!

long-running JS

@igrigorik

Twitter @igrigorik
 G+ gplus.to/igrigorik
 Web igvita.com

10m break... Questions?

http://twitter.com/igrigorik
http://gplus.to/igrigorik
http://www.igvita.com/

@igrigorik

HTML

CSS

DOM

CSSOM

JavaScript
Render

Tree
Layout PaintNetwork

In-app performance: CPU + Render

@igrigorik

DOM

CSSOM

Render
Tree

Layout Paint

 document.write("<p>I'm awesome</p>");

 var old_width = elem.style.width;
 elem.style.width = "300px";

 // or user input...

Same pipeline... except running in a loop!

● User can trigger an update: click, scroll, etc.
● JavaScript can manipulate the DOM
● JavaScript can manipulate the CSSOM

● Which may trigger a:
○ Style recalculation
○ Layout recalculation
○ Paint update

Performance = 60 FPS.

1000 ms / 60 FPS = 16 ms / frame

@igrigorik

Brief anatomy of a "frame"

frame

16 milliseconds is not a lot of time! The budget is split between:
● Application code
● Style recalculation
● Layout recalculation
● Garbage collection
● Painting

frame frame ...

16 ms

PaintLayoutGCYour code...

Not necessarily in this order, and we
(hopefully) don't have to perform all of
them on each frame!

@igrigorik

What happens if we exceed the budget?

frame

If we can't finish work in 16 ms...
● Frame is "dropped" - not rendered
● We will wait until next vsync
● ...
● Dropped frames = "jank"

...

16 ms

PaintLayoutGCYour code...

22 ms

Paint

Jank-free axioms

frame

● Your code must yield control in less than 16 ms!
○ Aim for <10ms
○ Browser needs to do extra work: GC, layout, paint
○ Don't forget that "10 ms" is not absolute (e.g. slower CPU's)

● Browser won't (can't) interrupt your code...
○ Split long-running functions
○ Aggregate events (e.g. handle scroll events once per frame)

frame frame ...

16 ms

PaintLayoutGCYour code...

● Aggregate your scroll events and defer them
● Process aggregated events on next requestAnimationFrame callback!

JavaScript induced jank...

Scroll

@igrigorik

Profile your JavaScript code!
10 ms is not a lot of time. What's your bottleneck?

@igrigorik

Structural and Sampling JavaScript Profiling
in Google Chrome

http://www.youtube.com/watch?v=nxXkquTPng8

http://www.youtube.com/watch?v=nxXkquTPng8
http://www.youtube.com/watch?v=nxXkquTPng8

@igrigorik

1. Sampling
a. Measures samples

2. Structural
a. Measures time
b. aka, instrumenting / markers / inline

 aka... chrome://tracing

@igrigorik

function A() {

 console.time("A");

 spinFor(2); // loop for 2 ms

 B();

 console.timeEnd("A");

}

VS

Annotate your code for structural profiling!

Garbage happens...
And that's ok. But, is GC your bottleneck? Memory leaks?

@igrigorik

Timeline » Memory

1. CMD-E to start recording
2. Interact with the page
3. Track amount of allocate objects
4. ...
5. Fix leak(s)
6. ...
7. Profit

Tip: use an Incognito window when
profiling code!

Force GC

@igrigorik

Heap snapshot + comparison view

1. Snapshot, save, import heap profile
2. Use comparison view to identify potential memory leaks (demo)
3. Use summary view to identify DOM leaks (demo)

https://developers.google.com/chrome-developer-tools/docs/heap-profiling-comparison
https://developers.google.com/chrome-developer-tools/docs/heap-profiling-dom-leaks

@igrigorik

Know thy memory model

http://goo.gl/dtRl8

● What are memory leaks?
● Tracking down memory leaks...
● War stories from GMail team

http://goo.gl/dtRl8
http://goo.gl/dtRl8

What's a "layout" anyway?
And how do we optimize for it?

● Layout phase calculates the size of each element: width, height, position
○ margins, padding, absolute and relative positions
○ propagate height based on contents of each element, etc...

● What will happen if I resize the parent container?
○ All elements under it (and around it, possibly) will have to be recomputed!

Layout: computing the width/height/position...

@igrigorik

<div style="width:50%">
 Stuff
</div>

<div style="width:75%">
 <p>

Hello world!
 </p>
</div>

Layout viewport

Stuff

Hello world!

Diagnosing layout performance

@igrigorik

● 2.5 ms to perform triggered layout
● 34 affected nodes (children)

○ Total DOM size: 2792 nodes

● Be careful about triggering expensive layout updates!
○ Adding nodes, removing nodes, updating styles, ... just about anything, actually. :-)

Layout can be very expensive....

@igrigorik

● Style recalculation is forcing a layout update... (hence the warning)
○ Change in size, position, etc...

● Synchronous layout? Glad you asked...

https://developers.google.com/chrome-developer-tools/docs/demos/too-much-layout/

https://developers.google.com/chrome-developer-tools/docs/demos/too-much-layout/
https://developers.google.com/chrome-developer-tools/docs/demos/too-much-layout/

Ideally, the layout is performed only once

frame

● DOM / CSSOM modification → dirty tree
○ Ideally, recalculated once, immediately prior to paint

● Except.. you can force a synchronous layout!

frame frame ...

16 ms

PaintLayoutGCYour code... Paint...

Lazy Synchronous
 for (n in nodes) {
 n.style.left =
 n.offsetLeft + 1 + "px";
 }

● First iteration marks tree as dirty
● Second iteration forces layout!

https://developers.google.com/chrome-developer-tools/docs/demos/too-much-layout/

https://developers.google.com/chrome-developer-tools/docs/demos/too-much-layout/
https://developers.google.com/chrome-developer-tools/docs/demos/too-much-layout/

OK. Let's paint some pixels!
Only took us a few hours to get here...

● Given layout information of all elements
○ Apply all the visual styles to each element
○ Composite all the elements and layers into a bitmap
○ Push the pixels to the screen

Paint process in a nutshell

@igrigorik

Layout viewport

Stuff

Hello world!

Pixels

Stuff

Hello world!

● Total area that needs to be (re)painted
○ We want to update the minimal amount

● Pixel rendering cost varies based on applied effects
○ Some styles are more expensive than others!

Paint process has variable costs based on...

@igrigorik

Layout viewport

Stuff

Hello world!

Pixels

Stuff

Hello world!

● Viewport is split into rectangular tiles
○ Each tile is rendered and cached

● Elements can have own layers
○ Allows reuse of same texture
○ Layers can be composited by GPU

Rendering 101

@igrigorik

Viewport

Stuff

Hello world!

@igrigorikWait, DevTools could do THAT?

Gold borders show
independent layers

Rendering is done
in rectangular tiles

Red border shows
repainted area

http://bit.ly/devtools-tips
http://bit.ly/devtools-tips

@igrigorik

Let's diagnose us some Jank....
What's the source of the problem?

● Large paints?
● CPU / JavaScript bound?
● Costly CSS effects?

Let's find out... (hint, all of the above)

http://www.igvita.com/slides/2012/devtools-tips-and-tricks/jank-demo.html
http://www.igvita.com/slides/2012/devtools-tips-and-tricks/jank-demo.html

@igrigorik

● Force full repaint on every frame to help find expensive elements and effects
● In Elements tab, hit "h" to hide the element, and watch the paint time costs!

Enable "continuous page repainting"

A few Chrome tips...
to make your debugging workflow more productive

@igrigorik

Timeline trace or it didn't happen...

1. Export timeline trace (raw JSON) for bug reports, later analysis, ...
2. Attach said trace to bug report!
3. Load trace and analyze the problem - kthnx!

Protip: CMD-e to start and stop recording!

@igrigorik

Annotate your Timeline!

function AddResult(name, result) {
 console.timeStamp("Adding result");
 var text = name + ': ' + result;
 results.innerHTML += (text + "
");
}

@igrigorik

Test your rendering performance on mobile device!

Connect your Android device via USB to the desktop and view and debug the code
executing on the device, with all the same DevTools features!

1. Settings > Developer Tools > Enable USB Debugging
2. chrome://inspect (on Canary)
3. ...
4. Profit

Wait, what about the GPU?
Won't it make rendering "super fast"?

Hardware Acceleration 101

1. The object is painted to a buffer (texture)
2. Texture is uploaded to GPU
3. Send commands to GPU: apply op X to texture Y

● A RenderLayer can have a GPU backing store
● Certain elements are GPU backed automatically

○ canvas, video, CSS3 animations, ...
● Forcing a GPU layer: -webkit-transform:translateZ(0)

○ don't abuse it, it can hurt performance!

GPU is really fast at compositing, matrix operations and alpha blends.

@igrigorik

Hardware Acceleration 101

● Minimize CPU-GPU interactions
● Texture uploads are not free

○ No upload: position, size, opacity
○ Texture upload: everything else

@igrigorik

CSS3 Animations with no Javascript!

 <style>
 .spin:hover {
 -webkit-animation: spin 2s infinite linear;
 }

 @-webkit-keyframes spin {
 0% { -webkit-transform: rotate(0deg);}
 100% { -webkit-transform: rotate(360deg);}
 }
 </style>

 <div class="spin" style="background-image: url(images/chrome-logo.png);"></div>

● Look ma, no JavaScript!
● Example: poster circle.

@igrigorik

CSS3 Animations are as close to "free lunch" as you can get **

** Assuming no texture reuploads and animation runs entirely on GPU...

http://www.webkit.org/blog-files/3d-transforms/poster-circle.html

HTML

CSS

DOM

CSSOM

JavaScript
Render

Tree
Layout PaintNetwork

Done? Repeat it all over... at 60 FPS! :-)

Let's wrap it up...
I heard you like top {N} lists...

Optimize your networking stack!

● Reduce DNS lookups
○ 130 ms average lookup time! And much slower on mobile..

● Avoid redirects
○ Often results in new handshake (and maybe even DNS)

● Make fewer HTTP requests
○ No request is faster than no request

● Account for network latency overhead
○ Breaking the 1000 ms mobile barrier requires careful engineering

● Use a CDN
○ Faster RTT = faster page loads
○ Also, terminate SSL closer to the user!

Reduce the size of your pages!

● GZIP your (text) assets
○ ~80% compression ratio for text

● Optimize images, pick optimal format
○ ~60% of total size of an average page!

● Add an Expires header
○ No request is faster than no request

● Add ETags
○ Conditional checks to avoid fetching duplicate content

Optimize the critical rendering path!

● Stream the HTML to the client
○ Allows the document parser to discover resources early

● Place stylesheets at the top
○ Rendered, and potentially DOM construction, is blocked on CSS!

● Load scripts asynchronously, whenever possible
○ Eliminate JavaScript from the critical rendering path

● Inline / push critical CSS and JavaScript
○ Eliminate extra network roundtrips from critical rendering path

Eliminate jank and memory leaks!

● Performance == 60 FPS
○ 16.6 ms budget per frame
○ Shared budget for your code, GC, layout, and painting
○ Use frames view to hunt down and eliminate jank

● Profile and optimize your code
○ Profile your JavaScript code
○ Profile the cost of layout and rendering!
○ Minimize CPU > GPU interaction

● Eliminate JS and DOM memory leaks
○ Monitor and diff heap usage to identify memory leaks

● Test on mobile devices
○ Emulators won't show you true performance on the device

Performance is a discipline.
Yes, this stuff is hard... let's not pretend otherwise.

Feedback & Slides @ bit.ly/fluent-perfshop

Twitter @igrigorik
 G+ gplus.to/igrigorik
 Web igvita.com

zomg, we made it.

http://twitter.com/igrigorik
http://gplus.to/igrigorik
http://www.igvita.com/

