Structural and Sampling JavaScript Profiling

(\ in Google Chrome

e

.

MY JavaS_cript You should
IS running use a profiler!
slowly...

Start with a sampling
profiler.. then dive into
specifics with structural!

J

/ \

\

1.

Sampling

a.

Measures samples

2. Structural

O

a.
b.

Measures time

aka, instrumenting / markers / inline

Q @ Elements Resources @ Network @ Sources GTimeline ’@ Proﬂles‘ @Audits

slectprfing ype

CPU PROFILES

Profile 1 “

| Profile 2

0 Collect JavaScript CPU Profile -

CPU profiles show where the execution time is spent in yot

Collect CSS Selector Profile

CSS selector profiles show how long the selector matching
results are approximate due to matching algorithm optimi:

(Take Heap Snapshot

Heap snapshot profiles show memory distribution among \

€ - C | [} chrome://tracing &
Tracing: | Record || Save || Load |

1014: BrowserBlockingWorker1/-12...

1014: BrowserWatchdog:
1014: Chrome_CacheThread:
1014: Chrome_DBThread:
1014: Chrome_FileThread:

1014: Chrome_FileUserBlockingThr...

1014: Chrome_HistoryThread:
1014: Chrome_I|OThread:
1014: CrBrowserMain:

Lt L des s L 2s L B L L As

il I [

M IllIII-IIIIIIIIIIIII L A III

W i FM

IIIIIIII

Sampling CPU Profilers

At a fixed frequency:

Instantaneously pause the program and sample the call stack

function foo() {
bar();

}

function bar() {
SAMPLE
}

foo();

2: program

O

Sampling CPU Profilers

| |

Assumption: our sample is representative of the workload

e data sampled on a 1 ms interval in Chrome
e collect data for longer period of time
e ensure that your code is exercising the right code-paths

O

Sampling CPU Profilers

Samples are processed and outputs two data points per function:

1. Percentage of samples function was leaf of a call stack
a. Analogous to exclusive time

2. Percentage of samples function was present in call stack
a. Analogous to inclusive time

function foo() {
bar();

}

inclusive ‘

function bar(){
SAMPLE 2: program

}
(\ foo();

Structural CPU Profilers

Functions are instrumented to record entry and exit times.

function foo() {
bar();

¥

function bar() {

¥

114

foo();

Structural execution trace

O

Structural CPU Profilers

Buffer is processed and outputs three data points per function:

1. Inclusive Time
a. Time function was running for including time spent inside children.

2. Exclusive Time
a. Time function was running for excluding time spent inside children.

3. Call Count
a. Number of times the function was called.

Structural
execution trace

O

JavaScript optimization: the quest to
minimize the of a
function. *

aka, including time spent inside children

Which should | use? ... Both!

Sampling Structural / Instrumenting
Time Approximate Exact
Invocation count Approximate Exact
Overhead Small High(er)
Accuracy *** Good - Poor Good - Poor
Extra code / instrumentation No Yes

e Instrumenting profilers requires that you.. instrument your code:

o Fine-grained control over what is being traced, but requires that you know what to trace

o Platform code / API's out of reach

« Sampling profilers require no instrumentation, but:

o Are an approximation of what is happening in your application

o May miss or hide some code-paths

(‘ P.S. It's not either, or... you need both!

Sampling CPU Profiling in Chrome

Built-in sampling CPU profiler in ... Profiles tab in Developer Tools!
e instantaneously pauses your code and samples the call stack

@ Network 3 Sources @Timeline ’ @y Profiles | gAudits Console

(X @Elements @Resources

é\/‘ i‘| Profiles

CPU PROFILES

g

Hog

Self w
89.57%
1.99%
0.54%
0.30%
0.30%
0.24%
0.24%
0.24%
0.21%
0.18%
0.18%
0.18%
0.15%
0.15%
0.12%
0.12%
0.12%
0.12%
0.12%
0.09%
0.09%
0.09%
0.09%
0.09%
0.09%
0.09%
0.09%
0.06%
0 06

Total
3.41s
76ms
21ms
11ms
11ms

9ms
85ms
9ms
8ms
7ms
7ms
7ms
6m
7m
43ms
5ms
Sms
21ms
Sms
3ms
368ms
3ms
25ms
6ms
8ms
3m
98ms
2ms
2me

[

w

Function
{program)
> set scrollLeft
> sS
» yeb
» IDa
» BB
» uCa
(garbage collector)
> Xja
» removeChild
» b
» KV
P set className
» https://docs.google.com/static/presentation/client/js /579034642 -editor_core.js
> x.Sv
» pCa
» dd
> eua
> Ve
> Ae
d
» daa
» fbb
» Hgb
» Saa.kp
> set scrollTop
»yCa
» Rb
» afF

579034642-editor_core.js:772
579034642-editor core.js:1382

579034642-editor_core.js:570

579034642-editor_core.js:23

579034642-editor_core.js:841

579034642-editor core.js:37
579034642-editor_core.js:896
579034642-editor core.is:34
579034642-editor_core.js:69
579034642-editer core.is:570
579034642-editor core.js:5

579034642-editor core.js:792

579034642-editor _core.js:1385

579034642-editor_core.js:24
579034642 -editor core is* 1006

Sampling CPU profiling in Chrome

3.84% 3.91% | » one_way_unify1_nboyer earley-boyer.js:3835
2.40% 4.26% | » runBlock0 regexp.js:120
3.35% 3.28% | > GeneratePayloadTree splay.js:49
2.15% 8.26% deriv_trees earley-boyer.js:4254
2.132% 8.28% loop2 earley-boyer.js:4272
1.78% 7.81% Flog.RayTracer.Engine.rayTrace raytrace.js: 708
1.68% 2.87% | » runBlock1 regexp.js:240
1.87% 2.42% P Flog.RayTracer.Shape.Sphere.intersect raytrace. j5:428 ¥
H > Q @ O Heavy (Bottom Up) + % © X o1 ¥

—_—

| Exclude selected function
Focus selected function

Switch between absolute and percentage times

Select Bottom Up or Top Down view

Demo:; V8 Benchmark Suite

e Heavy (bottom up view): functions by impact on performance + ability to examine the calling paths to each
e Tree (top down view): overall picture of the calling structure, starting at the top of the call stack
e Use "Focus selected function" to zero in on just the code you care about

(\ Chrome Developer Tools: CPU Profiling

http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
https://developers.google.com/chrome-developer-tools/docs/cpu-profiling
https://developers.google.com/chrome-developer-tools/docs/cpu-profiling

Structural CPU Profiling in Chrome

chrome://tracing is a power user structural profiler
e built for intrusive profiling of Chrome's internals
e most of this can and should be hidden for JavaScript profiling

- C' [chrome://tracing

Tracing: | Record || Save || Load |

Import errors! | Categories |

1014: BrowserWatchdog:
1014: Chrome_CacheThread:
1014: Chrome_DBThread:
1014: Chrome_FileThread:

1014: Chrome_FileUserBlocking...

1014: Chrome_HistoryThread:
1014: Chrome_HistoryThread:
1014: Chrome_IOThread:

1014: Chrome_ProcessLauncher...

1014: CrBrowserMain:

1085: Chrome_ChildlOThread:
1088: Chrome_ChildlOThread:
1089: Chrome_ChildlOThread:
1090: Chrome_ChildlOThread:
1092: Chrome_ChildlOThread:

L 4s ., . . Iss, . . . I6s .

|
{
|
|

|
|

|
|

| | | | | |

| | |

| | Il
N . T il

| | |
I| I | I

|

T 1T LT II|||| L T P O A T o T

1k ’p ey 'W’WMW |wwwup|um|q| (R

|
|
|
|
|

|
|
|
|

\
|
|
|
|

|
|
|
|

HF H'!”"

| | |
| | |
| I — |
| I — |
| | |

How to use chrome://tracing to profile JavaScript...

1. You™ must instrument your JavaScript code.

function foo() {
console.time("foo");
bar();
console.timeEnd("foo0");

function bar() {
console.time("bar");
console.timeEnd("bar");

foo();

Some types of instrumentation:
e Manual
e Compiler / automatic tool
e Runtime instrumentation (ex. Valgrind)

"Trace macros are very low overhead. When tracing is not
turned on, trace macros cost at most a few dozen
clocks. When running, trace macros cost a few thousand
clocks at most.

Arguments to the trace macro are evaluated only when
tracing is on --- if tracing is off, the value of the arguments
don't get computed.”

(\ WARNING: console.time and console.timeEnd spam the developer tools console. Keep it closed.

How to use chrome://tracing to profile JavaScript...

2. Start recordlng a trace € C [3 chrome://tracing

Tracing: | Record | Save | Load |

*

3. Interact with your application...

4. Head back, hit stop tracing Buffer usage: 7%

Tracing active.

(\ Record on the order of a few to dozens of seconds of profiling data...

How to use chrome://tracing to profile JavaScript...

5. Behold the noise!

Tracing: | Record || Save || Load |

Import errors! | Categories | [«[=]
e I5s

les s, . . . s, . . Bs, . . . |45,

1014: BrowserWatchdog:

1014: Chrome_CacheThread:
1014: Chrome_DBThread:

1014: Chrome_FileThread:

1014: Chrome_FileUserBlocking...
1014: Chrome_HistoryThread:
1014: Chrome_HistoryThread:
1014: Chrome_|OThread:

1014: Chrome_ProcessLauncher...
1014: CrBrowserMain:

1085: Chrome_ChildIOThread:
1088: Chrome_ChildIOThread:
1089: Chrome_ChildlOThread:
1090: Chrome_ChildlOThread:
1092: Chrome_ChildIOThread:
1092: CrRendererMain:

1093: Chrome_ChildlOThread:

| I 1 I | |
| |
| | 1l
| I II | III | I IH | |
I | N N N | I |

I IIHHIHHWMNWWHIWWMIIHMMIIMHIMWIIMWIHNMHWNMIHWWWHHWWWIMWMHHIINMWHIIHIHHIHIMHWMHHHIH

1k "I 'II'I' W mr i mI II

R (

L | |

I			
I			
I			
I			
I			

How to use chrome://tracing to profile JavaScript...

6. Find your page's process ID in chrome://memory

& C' |7 chrome://memory-redirect
Memory
PID Name Resident Shared Private
668 Browser 315,392k« 123,904« 246,784«
24454‘ 24454 Tab (Chrome) 26,624k 64,512k 4,608k
About Memory
23358 Tab 64,512k 61,440k 40,960k

O

Google

How to use chrome://tracing to profile JavaScript...

7. Filter for the signal

e remove unnecessary threads and components
e click on "Categories" in top right, and filter down the list

cing: [Record | [Save | [Load |

052: CrRendererMain:
656: CrRendererMain:

puMemoryUsage:
puTlransferBufferMemory[af6e5d4c. ..
haredMemory[af6e5d4c8198476f]:
996: CrRendererMain:

692: CrRendererMain:

rawPixelsCulled[af80014c876862ab]:
stimatedTexturesPerSecond:
ploadTilesCulled[af80014c876aaf6b]:

7244 CrRendererMain:

O

|228 p=

Select active categories:

| IndexedDB
~ v8

| ppapi proxy
™ webkit

| renderer

How to use chrome://tracing to profile JavaScript...

8. Inspect the trace timeline, isolate your code...

W
S D

s . . Iwespmg . . Jexms . [i7opmg . . [i7ipms A

Remember your Quake keys?

D - pan right

W -zoom in

I e rroemed
execution ?-help

O

Let's do a walkthrough...

Hands on profiling...

Let's assume the following scenario, with known exclusive run times...

function gameloop(timestamp) {

AC);

requestAnimationFrame(gameloop);

}

function A() {
spinFor(2);
B();

}

function D() {

spinFor(2);
}

O

Function Exclusive Run Time
A() 2 ms

B() 8 ms

C() T ms

D() 2 ms

Total 13 ms

Hands on profiling...

Open up Profiles tab in Developer Tools, hit start, record, stop...

@ Network 3 Sources @Timeline ’ ’\C Profiles ' gAudiu

Select profiling type

® Collect JavaScript CPU Profile

CPU profiles show where the execution time is spent in yol

Where is A(), B(), and C()?

spinFor() is only in 0.96 % of the samples?!

<facepalm>

A(), B(), C(), and spinFor() were optimized and ultimately inlined into gameloop!

</facepalm>

O

oosef v

56.43%
18.71% |
12.41%
13.41% |
5.20%
4.88%
0%
4.86% |
0.98%
0.14% |
0.10%
0.03% |
0.10%
0.03% |
0.02%

Total

81.18%
18.71%
18.20%
18.20%
5.20%
4.88%
4.86%
4.88%
0.28%
0.14%
0.10%
0.02%
0.10%
0.02%
0.02%

Function
gameloop

(program)
\ 4"

gameloop

P http://localhost:8000/1c0p.js

¥ doWork
»D
P> doWork
P spinFor
¥ get window
gameloop
»D
[garbage collector)
¥ get performance
gameloop

Inlining is a common compiler optimization

function gameloop(timestamp) { function gameloop(timestamp) {

var x = 0; var x = 0;

for (int i = 0; i < 10; i++) { for (int i = 9; i < 10; i++) {
X = A(X); :> X = X + X;

} }

} }

function A(x) {
return x + X;

}

A() is erased when inlined into gameloop. Erased functions cannot show up in sampling profiler capture.

... Code in V8 != code in your source

(‘ Performance tips for JavaScript in V8 - Chris Wilson

http://www.html5rocks.com/en/tutorials/speed/v8/
http://www.html5rocks.com/en/tutorials/speed/v8/

Chrome Developer Tools (Sampling) Profiler

O

52.48%
18.71%
12.41%
12.41%
5.20%
4.86%
0%
4.86%
0.98%
0.14%
0.10%
0.02%
0.10%
0.023%
0.02%

That's not to say that the sampling profiler is useless - to the contrary!

Totsl
81.18%
18.71%
18.20%
18.20%

5.20%
4.88%
4.86%
4.86%
0.98%
0.143%
0.10%
0.023%
0.10%
0.02%
0.02%

Function
gameloop

{program)
YD
gameloop

P http://localhost:8000/Icop.js

¥ doWork
»D
» doWork
P spinFor
¥ get window
gameloop
D

|garbage collector)
¥ get performsance

gameloop

This trace does not resemble the
application's actual execution flow or
execution time.

Hands on profiling...

function A() {
console.time("A");
spinFor(2); // loop for 2 ms

B(); // Calls C Let's instrument our code with
console.timeEnd("A"); structural markers to help trace the
} actual execution path

P.S. The functions can still be inlined,
function D() { but so will our console statements!
// Called by C
console.time("D");

spinFor(2); // loop for 2 ms
console.timeEnd("D");

}

(\ If you're wondering... there is ~0.01 ms of overhead per console call

Let's zoom in on the execution trace in chrome://tracing...

O

A

-

Function Entry Time Exit Time Inclusive Runtime Exclusive Runtime
A() 0 ms 13 ms 13 ms 2 ms
B() 2ms 13 ms 11 ms 8 ms
(of) 10 ms 13 ms 3ms T ms
D() 11 ms 13 ms 2 ms 2 ms

Hands on profiling conclusions...

Sampling Profiler (Dev Tools)
o (in this case) did not present a clear picture of program execution flow or timings

Structural Profiler (chrome://tracing)

o Clearly showed program execution flow and timings
o Required additional instrumentation

O

Real-world profiling workflow

@ Realize JavaScript is running slow

¢

Total Function
() Use sampling profilr to determine
where to add instrumentation - prog
12.41% 18.20% | ¥D

¢

@ Instrument and capture a trace

4

Optimize slowest region of code

(\ Rinse, lather, repeat...

A few closing tips...

O

start with the sampling profiler...
learn the navigation keys (WASD) for chrome://tracing
filter down the recorded trace to process ID you care about

console.{time, timeEnd} pairs can cross function boundaries
o Start with a large area of code and narrow with a binary search!

Recall that V8 code != your source code
o Thatis, it's not necessarily the same...

You can save & load both types of profiling runs
o Attach them to your tickets, save for later, etc.

Think about the data being processed...

o Is one piece of data slower to process than the others?
o Experiment with naming time ranges based on data name

Process Dats List

2\

VS

Process Data List
Data ltem 1 Data Item 2 Data ltem 2 Data ltem 4 Data ltem & Data ltem &

WebViewlmpl::updatesAnimastions
v8.callFunction

O

Planning for performance: allocate and follow a budget!!!

e Budget
o Each module of your application should have a time budget
o Sum of all modules should be less than 16 ms for smooth apps

e Track performance data daily (per commit?)
o Catch Budget Busters right away

>

O

Oh, and one more thing...

Demo: determining frame rate in chrome://tracing

Questions!

http://goo.gl/0SY]o

