
WebRTC

+Ilya Grigorik @igrigorik
Make The Web Faster, Google

Building Faster Mobile Websites
the nuts and bolts of hitting the 1000 millisecond "time to glass" target ...

Video of the talk: http://bit.ly/12GFKDE

http://bit.ly/12GFKDE

What's the impact of slow sites?
Lower conversions and engagement, higher bounce rates...

Performance Related Changes and their User Impact

Web Search Delay Experiment

@igrigorik

● The cost of delay increases over time and persists
● Delays under half a second impact business metrics
● "Speed matters" is not just lip service

Type of Delay Delay (ms) Duration (weeks) Impact on Avg.
Daily Searches

Pre-header 50 4 Not measurable

Pre-header 100 4 -0.20%

Post-header 200 6 -0.59%

Post-header 400 6 -0.59%

Post-ads 200 4 -0.30%

http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx
http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx

Performance Related Changes and their User Impact

Server Delays Experiment

● Strong negative impacts
● Roughly linear changes with increasing delay
● Time to Click changed by roughly double the delay

@igrigorik

http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx
http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx

Yo ho ho and a few billion pages of RUM

How speed affects bounce rate

@igrigorik

http://www.slideshare.net/joshfraz/sept-2012rumtalk
http://www.slideshare.net/joshfraz/sept-2012rumtalk

So, how are we doing today?
Okay, I get it, speed matters... but, are we there yet?

Usability Engineering 101

Delay User reaction

0 - 100 ms Instant

100 - 300 ms Feels sluggish

300 - 1000 ms Machine is working...

1 s+ Mental context switch

10 s+ I'll come back later...

Stay under 250 ms
to feel "fast".

Stay under 1000 ms
to keep users
attention.

@igrigorik

How Fast Are Websites Around The World? - Google Analytics Blog

Desktop
Median: ~2.7s
Mean: ~6.9s

Mobile *
Median: ~4.8s
Mean: ~10.2s

* optimistic

@igrigorik

http://analytics.blogspot.com/2012/04/global-site-speed-overview-how-fast-are.html
http://analytics.blogspot.com/2012/04/global-site-speed-overview-how-fast-are.html

HTTP Archive - Mobile Trends (Feb, 2013)

Content Type Avg # of Requests Avg size
HTML 6 39 kB

Images 39 490 kB

Javascript 10 142 kB

CSS 3 27 kB

@igrigorik

http://mobile.httparchive.org/trends.php
http://mobile.httparchive.org/trends.php

For many, mobile is the one and only internet device!

Country Mobile-only users

Egypt 70%

India 59%

South Africa 57%

Indonesia 44%

United States 25%

onDevice Research

@igrigorik

The network will save us!
1000 ms is plenty of time.. 4G will fix everything! Right, right?

* Nope.

Fiber-to-the-home services provided 18 ms round-trip latency on average, while cable-based services
averaged 26 ms, and DSL-based services averaged 43 ms. This compares to 2011 figures of 17 ms for
fiber, 28 ms for cable and 44 ms for DSL.

Measuring Broadband America - July 2012 - FCC @igrigorik

http://www.fcc.gov/measuring-broadband-america/2012/july
http://www.fcc.gov/measuring-broadband-america/2012/july

Mobile, oh Mobile...

"Users of the Sprint 4G network can expect to experience average speeds of 3 Mbps to 6 Mbps
download and up to 1.5 Mbps upload with an average latency of 150 ms. On the Sprint 3G
network, users can expect to experience average speeds of 600 Kbps - 1.4 Mbps download and
350 Kbps - 500 Kbps upload with an average latency of 400 ms."

@igrigorik

3G 4G

Sprint 400 ms 150 ms

AT&T 150 - 400 ms 100 - 200 ms

AT&T

http://www.att.com/esupport/article.jsp?sid=64785#fbid=mXPoLdNrqYR
http://www.att.com/esupport/article.jsp?sid=64785#fbid=mXPoLdNrqYR

● Radio is the second most expensive component (after screen)
● Limited amount of available power (as you well know...)

Mobile design constraint: Battery life

Control and User plane latencies

RRC

I want to
send data! 1

2
1-X RTT's of
negotiations

3
Application
data

Control-plane latency User-plane latency

 LTE HSPA+ 3G

Idle to connected latency < 100 ms < 100 ms < 2.5 s

User-plane one-way latency < 5 ms < 10 ms < 50 ms

● There is a one time cost for control-plane
negotiation

● User-plane latency is the one-way latency between
packet availability in the device and packet at the
base station

Same process happens for incoming data, just reverse steps 1 and 2

LTE power state transitions (AT&T)

Idle

Active

Short
sleep

Long
sleep

CP: 260 ms CP: <50 ms100 ms

100 ms

10 s

● Idle to Active: 260 ms control-plane latency
● Dormant to Active: <50 ms control-plane

latency (spec)

● Timeout driven state transitions back to idle
○ 100 ms, 100 ms, 10 s > Idle

● Similar state machine for 3G devices
○ Except CP latencies are much higher

https://github.com/attdevsupport/ARO/blob/master/ARODataAnalyzer/src/lte.conf

https://github.com/attdevsupport/ARO/blob/master/ARODataAnalyzer/src/lte.conf
https://github.com/attdevsupport/ARO/blob/master/ARODataAnalyzer/src/lte.conf

@igrigorik

● Radio cycles between 3 states
○ Idle
○ Low TX power (FACH)
○ High TX power (DCH)

3G power state transitions (AT&T)

I just wanted to make a fast mobile app.....

Uh huh... Yeah, tell me more...

@igrigorik

1. Latency variability can be very high on mobile networks

2. 4G networks will improve latency, but...
a. We still have a long way to go until everyone is on 4G - a decade!
b. And 3G is definitely not going away anytime soon
c. Ergo, latency and variability in latency is a problem

3. What can we do about it?
a. Re-use connections
b. Download resources in bulk, avoid waking up the radio
c. Compress resources
d. Cache

How do we render the page?
we're getting bytes off the wire... and then what?

Life of a web-page in the browser...

How WebKit works - Adam Barth

Network

Resource Loader

HTML Parser

DOM Script

Render Tree

CSS

Graphics Context

1. Fetch resources from the network
2. Parse, tokenize, construct the DOM

a. Run scripts...
3. Output to the screen

@igrigorik

https://docs.google.com/presentation/pub?id=1ZRIQbUKw9Tf077odCh66OrrwRIVNLvI_nhLm2Gi__F0#slide=id.g312aaaf6_1_188
https://docs.google.com/presentation/pub?id=1ZRIQbUKw9Tf077odCh66OrrwRIVNLvI_nhLm2Gi__F0#slide=id.g312aaaf6_1_188

The HTML5 parser at work...

How WebKit works - Adam Barth

Tokenizer

TreeBuilder

Bytes

Characters

Tokens

Nodes

DOM

<body>Hello, world!</body>

StartTag: body Hello, StartTag: span world! EndTag: span

body Hello, span world!

body

Hello, span

world!

3C 62 6F 64 79 3E 48 65 6C 6C 6F 2C 20 3C 73 70 61 6E 3E 77 6F 72 6C 64 21 3C 2F 73 70 61 6E
3E 3C 2F 62 6F 64 79 3E

DOM is constructed incrementally, as
the bytes arrive on the "wire".

@igrigorik

https://docs.google.com/presentation/pub?id=1ZRIQbUKw9Tf077odCh66OrrwRIVNLvI_nhLm2Gi__F0#slide=id.g312aaaf6_1_188
https://docs.google.com/presentation/pub?id=1ZRIQbUKw9Tf077odCh66OrrwRIVNLvI_nhLm2Gi__F0#slide=id.g312aaaf6_1_188

Deciphering the Critical Rendering Path

● HTML > Document Object Model - incremental parsing
● CSS > CSS Object Model

● Rendering is blocked on CSSOM and DOM

Deciphering the Critical Rendering Path @igrigorik

http://calendar.perfplanet.com/2012/deciphering-the-critical-rendering-path/
http://calendar.perfplanet.com/2012/deciphering-the-critical-rendering-path/

The HTML5 parser at work...

<!doctype html>
<meta charset=utf-8>
<title>Awesome HTML5 page</title>

<script src=application.js></script>
<link href=styles.css rel=stylesheet />

<p>I'm awesome.

HTMLDocumentParser begins parsing the received data ...

HTML
 - HEAD
 - META charset="utf-8"
 - TITLE
 #text: Awesome HTML5 page
 - SCRIPT src="application.js"
 ** stop **

Stop. Dispatch request for application.js. Wait...

@igrigorik

(1) Scripts can block the document parser...

 ... <p>lorem ipsum</p> ... Tokenizer DOM TreeBuilder

document.write("<script>");

JavaScript can block DOM construction.

Script execution can change the input stream.
Hence we must wait for script to execute.

@igrigorik

Sync scripts block the parser...

<script type="text/javascript"
 src="https://apis.google.com/js/plusone.js"></script>

<script type="text/javascript">

 (function() {

 var po = document.createElement('script'); po.type = 'text/javascript';

 po.async = true; po.src = 'https://apis.google.com/js/plusone.js';

 var s = document.getElementsByTagName('script')[0];

 s.parentNode.insertBefore(po, s);

 })();

</script>

Sync script will block the rendering of your page:

Async script will not block the rendering of your page:

@igrigorik

(2) Javascript can query CSS, which means...

JavaScript can block on CSS.

DOM construction can be blocked on Javascript, which can be blocked on CSS
○ ex: asking for computed style, but stylesheet is not yet ready...

Javascript

At least CSS can't query javascript.. phew! @igrigorik

(3) Rendering is blocked on CSS...

CSS must be fetched & parsed before Render tree can be painted.

Otherwise, the user will see "flash of unstyled content" + reflow and repaint when CSS is
ready

Javascript

At least CSS can't query javascript.. phew! @igrigorik

Performance rules to keep in mind...

(1) JavaScript can block the DOM construction
(2) JavaScript can block on CSS
(3) Rendering is blocked on CSS...

Which means...

(1) Get CSS down to the client as fast as you can
○ Unblocks paints, removes potential JS waiting on CSS scenario

(2) If you can, use async scripts + avoid doc.write at all costs
○ Faster DOM construction, faster DCL and paint!
○ Do you need scripts in your critical rendering path?

Let's put it all together now
network, browser rendering pipeline, and the rest...

Navigation Timing (W3C)

Navigation Timing spec @igrigorik

http://test.w3.org/webperf/specs/NavigationTiming/
http://test.w3.org/webperf/specs/NavigationTiming/

Navigation Timing (W3C)

@igrigorik

Available in...

● IE 9+
● Firefox 7+
● Chrome 6+
● Android 4.0+

caniuse.com/nav-timing

@igrigorik

http://caniuse.com/nav-timing
http://caniuse.com/nav-timing

The (short) life of a web request

@igrigorik

● (Worst case) DNS lookup to resolve the hostname to IP address
● (Worst case) New TCP connection, requiring a full roundtrip to the server
● (Worst case) TLS handshake with up to two extra server roundtrips!

● HTTP request, requiring a full roundtrip to the server
● Server processing time

@igrigorik

The (short) life of our 1000 ms budget

3G
(200 ms RTT)

4G
(80 ms RTT)

Control plane (200-2500 ms) (50-100 ms)

DNS lookup 200 ms 80 ms

TCP Connection 200 ms 80 ms

TLS handshake (200-400 ms) (80-160 ms)

HTTP request 200 ms 80 ms

Leftover budget 0-400 ms 500-760 ms

Network overhead of
one HTTP request!

Our mobile apps and pages are not single
HTTP requests... are they?

But, perhaps they {could, should} be?

@igrigorik

3G
(200 ms RTT)

4G
(80 ms RTT)

Leftover budget 0-400 ms 500-760 ms

~400 ms of budget left for...

● Server processing time
○ what is your server processing time?

● Client-rendering
○ what does it take to render a page?

Should be <100 ms

Reserve 100 ms for
layout, rendering

200 ms

JavaScript execution and an extra request if we're lucky!

Breaking the 1000 ms time to glass mobile barrier... hard facts:

1. Majority of time is in network overhead
○ Leftover budget is ~400 ms on average

2. Fast server processing time is a must
○ Ideally below 100 ms

3. Must allocate time for browser parsing and rendering
○ Reserve at least 100 ms of overhead

Therefore...

Breaking the 1000 ms time to glass mobile barrier... implications:

1. Inline just the required resources for above the fold
○ No room for extra requests... unfortunately!
○ Identify and inline critical CSS
○ Eliminate JavaScript from the critical rendering path

2. Defer the rest until after the above the fold is visible
○ Progressive enhancement...

3. ...
4. Profit

Make your mobile pages render in under one second

http://calendar.perfplanet.com/2012/make-your-mobile-pages-render-in-under-one-second/
http://calendar.perfplanet.com/2012/make-your-mobile-pages-render-in-under-one-second/

A simple example in action...
network, browser rendering pipeline, and the rest...

<html>

<head>
 <link rel="stylesheet" href="all.css">
 <script src="application.js"></script>
</head>

<body>
 <div class="main">
 Here is my content.
 </div>
 <div class="leftnav">
 Perhaps there is a left nav bar here.
 </div>
 ...
</body>
</html>

1. Split all.css, inline AFT styles
2. Do you need the JS at all?

○ Progressive enhancement
○ Inline AFT JS code
○ Defer the rest

<html>
<head>

 <style>
 .main { ... }
 .leftnav { ... }
 /* ... any other styles needed for the initial render here ... */
 </style>

 <script>
 // Any script needed for initial render here.
 // Ideally, there should be no JS needed for the initial render
 </script>

</head>
<body>
 <div class="main">
 Here is my content.
 </div>
 <div class="leftnav">
 Perhaps there is a left nav bar here.
 </div>

 <script>
 function run_after_onload() {

 load('stylesheet', 'remainder.css')
 load('javascript', 'remainder.js')
 }
 </script>

</body>
</html>

Above the fold CSS

Above the fold JS
(ideally, none)

Paint the above the fold,
then fill in the rest

A few tools to help you...
How do I find "critical CSS" and my critical rendering path?

@igrigorik

Identify critical CSS via an Audit

DevTools > Audits > Web Page Performance

guardian.co.uk

Full Waterfall

Critical Path

Critical Path Explorer extracts the
subtree of the waterfall that is in the
"critical path" of the document
parser and the renderer.

(automation for the win!)

@igrigorik

https://developers.google.com/speed/pagespeed/insights

300 ms redirect!

@igrigorik

DCL.. no defer

300 ms redirect!

JS execution
blocked on CSS

@igrigorik

300 ms redirect!

JS execution
blocked on CSS

doc.write() some
JavaScript - doh!

@igrigorik

300 ms redirect!

JS execution
blocked on CSS

doc.write() some
JavaScript - doh!

long-running JS

@igrigorik

One request. Inline. Defer the rest.
It's not as crazy, or as hard as it sounds: investigate your critical rendering path.

Thanks! Questions?
● 1000 ms total budget

○ 600 ms in network overhead
○ 400 ms for server processing and browser rendering

■ aim for <100 ms server response
■ reserve 100 ms for browser rendering

● To beat 1000 ms time to glass barrier
○ Inline critical CSS (no room for other requests)
○ Eliminate JavaScript from critical rendering path

+Ilya Grigorik - igrigorik@google.com - @igrigorik bit.ly/browser-networking

Slides @ bit.ly/mobile-barrier
Video @ bit.ly/12GFKDE

http://bit.ly/browser-networking
http://bit.ly/browser-networking
http://bit.ly/mobile-barrier
http://bit.ly/12GFKDE

