
WebRTC

Ilya Grigorik - @igrigorik
Make The Web Fast
Google

Building Faster Websites
crash course on web performance

Make the Web Fast team at Google:

● Kernel, Networking, Infrastructure, Chrome, Mobile...
● Research & drive performance web standards (W3C, etc)
● Build open source tools, contribute to existing projects
● Optimize Google, optimize the web...

 developers.google.com/speed

Goal: make the entire web faster

1. The problem...
○ Trends on the web
○ Networking in the browser (HTTP, and beyond)
○ Mobile networks

2. Browser architecture under the hood...
○ Measuring performance
○ Networking, DOM, Rendering, HW acceleration

3. Best practices, with context...
○ Optimizing load time
○ Optimizing apps (FPS, memory, etc)
○ Automating optimization...

Our agenda for today...

Trends & Technologies...
What do we mean by fast? Why? Won't the networks save us? Mobile?

What's the impact of slow sites?
Lower conversions and engagement, higher bounce rates...

Performance Related Changes and their User Impact

Web Search Delay Experiment

@igrigorik

● The cost of delay increases over time and persists
● Delays under half a second impact business metrics
● "Speed matters" is not just lip service

Type of Delay Delay (ms) Duration (weeks) Impact on Avg.
Daily Searches

Pre-header 50 4 Not measurable

Pre-header 100 4 -0.20%

Post-header 200 6 -0.59%

Post-header 400 6 -0.59%

Post-ads 200 4 -0.30%

http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx
http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx

Performance Related Changes and their User Impact

Server Delays Experiment

● Strong negative impacts
● Roughly linear changes with increasing delay
● Time to Click changed by roughly double the delay

@igrigorik

http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx
http://assets.en.oreilly.com/1/event/29/The%20User%20and%20Business%20Impact%20of%20Server%20Delays,%20Additional%20Bytes,%20and%20HTTP%20Chunking%20in%20Web%20Search%20Presentation.pptx

Impact of web latency on conversion rates

Server Delays Experiment

● Strong negative impacts
● Roughly linear changes with increasing delay
● Time to Click changed by roughly double the delay

@igrigorik

http://www.slideshare.net/bitcurrent/impact-of-web-latency-on-conversion-rates
http://www.slideshare.net/bitcurrent/impact-of-web-latency-on-conversion-rates

Shopzilla's Site Redo

Impact of PLT on bottom line

Conversion Rate +7~12%

Pageviews +25%

US SEM sessions +8%

Bizrate.co.uk SEM sessions +120%

shopzilla.com

bizrate.co.uk

@igrigorik

http://assets.en.oreilly.com/1/event/29/Shopzilla%27s%20Site%20Redo%20-%20You%20Get%20What%20You%20Measure%20Presentation.ppt
http://assets.en.oreilly.com/1/event/29/Shopzilla%27s%20Site%20Redo%20-%20You%20Get%20What%20You%20Measure%20Presentation.ppt

Yo ho ho and a few billion pages of RUM

How speed affects bounce rate

@igrigorik

http://www.slideshare.net/joshfraz/sept-2012rumtalk
http://www.slideshare.net/joshfraz/sept-2012rumtalk

Using site speed in web search ranking

Site speed is a signal for search

"We encourage you to start
looking at your site's speed —
not only to improve your ranking
in search engines, but also to
improve everyone's experience
on the Internet."

Google Search Quality Team

@igrigorik

http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html
http://googlewebmastercentral.blogspot.com/2010/04/using-site-speed-in-web-search-ranking.html

 If you want to succeed with web-performance, don't
view it as a technical metric. Instead, measure and
correlate it's impact on your business metrics.

How do you do that? With analytics and real user monitoring.

So, how are we doing today?
Okay, I get it, speed matters... but, are we there yet?

Usability Engineering 101

Delay User reaction

0 - 100 ms Instant

100 - 300 ms Feels sluggish

300 - 1000 ms Machine is working...

1 s+ Mental context switch

10 s+ I'll come back later...

Rule of thumb:

Stay under 250 ms
to feel "fast".

@igrigorik

How Fast Are Websites Around The World? - Google Analytics Blog

Desktop
Median: ~2.7s
Mean: ~6.9s

Mobile *
Median: ~4.8s
Mean: ~10.2s

* optimistic

@igrigorik

http://analytics.blogspot.com/2012/04/global-site-speed-overview-how-fast-are.html
http://analytics.blogspot.com/2012/04/global-site-speed-overview-how-fast-are.html

HTTP Archive - Trends (Sept, 2012)

Content Type Avg # of Requests Avg size
HTML 8 44 kB

Images 53 635 kB

Javascript 14 189 kB

CSS 5 35 kB

@igrigorik

http://httparchive.org/trends.php#bytesTotal&reqTotal
http://httparchive.org/trends.php#bytesTotal&reqTotal

Life of an HTTP Request

@igrigorik

Let's talk about DNS
A very brief, but important detour...

Most DNS servers are...

● Under provisioned
● Not monitored well
● Susceptible to attacks
● ...

● Poor cache hit rate
● Intermittent failures
● DDOS, cache poisoning, ...

"Operating the Googlebot web crawler, we have observed an average resolution time of 130 ms for
nameservers that respond. However, a full 4-6% of requests simply time out, due to UDP packet loss and
servers being unreachable. If we take into account failures such as packet loss, dead nameservers, DNS
configuration errors, etc., the actual average end-to-end resolution time is 300-400 ms."

Public DNS: Performance Benefits @igrigorik

https://developers.google.com/speed/public-dns/docs/performance
https://developers.google.com/speed/public-dns/docs/performance

8.8.4.4
8.8.8.8

Google Public DNS
free, no redirects, etc.

 namebench

"namebench runs a fair and thorough benchmark using your web browser history, tcpdump output, or
standardized datasets in order to provide an individualized recommendation. namebench is completely
free and does not modify your system in any way. This project began as a 20% project at Google."

namebench - Google Code @igrigorik

http://code.google.com/p/namebench/
http://code.google.com/p/namebench/

Life of an HTTP Request

● Benchmark your site DNS provider
● Benchmark your ISP DNS provider...

Did you compress, minify, etc?

Can we make the server
respond faster?

Can we move the server closer?

@igrigorik

1. Unload the DOM
2. DNS resolution
3. Connection & TCP handshake
4. Send request, wait for response
5. Parse response
6. Request sub-resources (see step 1)
7. Execute scripts, apply CSS rules

What does it take to load a web-page?

x 84
 (doh)

devoxx.com

@igrigorik

● 67 requests
● 3.83MB transferred

● DomContentLoaded: 2.48s
● onload: 16.20s

"Waterfall" of associated
resources required to compose
the page.

● ~84 requests
● ~1 MB transferred

● Scheduled by the browser
● ... "front-end" performance

● Can we make the waterfall...
○ Shorter? Thinner?

What do we mean by "frontend" performance?

Page HTML

 @igrigorik

Frontend this... backend that...

Focus on the lifetime of the page.

It just so happens that our pages are
growing in complexity, and many
resources are now scheduled by the
browser. Not surprisingly, that's where
you will find many optimization
opportunities.

What do we mean by "frontend" performance?

"backend"
 14%

"frontend"
 86%

gLearn class - Steve Souders @igrigorik

http://stevesouders.com/docs/google-feperf-20120920.pptx
http://stevesouders.com/docs/google-feperf-20120920.pptx

The network will save us?
Right, right? Or maybe not...

Average connection speed in Q1 2012: 5000 kbps+

State of the Internet - Akamai - 2007-2012

http://www.akamai.com/stateoftheinternet/
http://www.akamai.com/stateoftheinternet/

Fiber-to-the-home services provided 18 ms round-trip latency on average, while cable-based services
averaged 26 ms, and DSL-based services averaged 43 ms. This compares to 2011 figures of 17 ms for
fiber, 28 ms for cable and 44 ms for DSL.

Measuring Broadband America - July 2012 - FCC @igrigorik

http://www.fcc.gov/measuring-broadband-america/2012/july
http://www.fcc.gov/measuring-broadband-america/2012/july

Worldwide: ~100ms
US: ~50~60ms

Average RTT to Google in 2012 is...

Bandwidth doesn't matter (much)
It's the latency, dammit!

PLT: latency vs. bandwidth

Average household in is running on a 5 mbps+ connection. Ergo, average consumer would not see
an improvement in page loading time by upgrading their connection. (doh!)

Bandwidth doesn't matter (much) - Google @igrigorik

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2
https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2

Mobile, oh Mobile...

Users of the Sprint 4G network can expect to experience average speeds of 3Mbps to 6Mbps
download and up to 1.5Mbps upload with an average latency of 150ms. On the Sprint 3G
network, users can expect to experience average speeds of 600Kbps - 1.4Mbps download and
350Kbps - 500Kbps upload with an average latency of 400ms.

Virgin Mobile FAQ

We stopped at 240ms!

(facepalm meme goes here...)

@igrigorik

http://www.virginmobileusa.com/networkmanagement
http://www.virginmobileusa.com/networkmanagement

● Improving bandwidth is easy... ****
○ Still lots of unlit fiber
○ 60% of new capacity through upgrades
○ "Just lay more cable" ...

● Improving latency is expensive... impossible?
○ Bounded by the speed of light
○ We're already within a small constant factor of the maximum
○ Lay shorter cables!

$80M / ms

Latency is the new Performance Bottleneck @igrigorik

http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
http://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/

Why is latency the problem?
Remember that HTTP thing... yeah...

● No pipelining: request queuing
● Pipelining*: response queuing

HTTP doesn't have multiplexing!

HOL

client server

● Head of Line blocking
○ It's a guessing game...
○ Should I wait, or should I pipeline?

@igrigorik

● 6 connections per host on Desktop
● 6 connections per host on Mobile (recent builds)

 So what, what's the big deal?

Open multiple TCP connections!!!

@igrigorik

TCP Congestion Control & Avoidance...

● TCP is designed to probe the network to figure out the available capacity
● TCP Slow Start - feature, not a bug

Exponential
growth

Packet Loss

@igrigorik

HTTP Archive says...
● 1098kb, 82 requests, ~30 hosts... ~14kb per request!
● Most HTTP traffic is composed of small, bursty, TCP flows

You are here

1-3 RTT's

Where we
want to be

@igrigorik

Update CWND from 3 to 10 segments, or ~14960 bytes

Default size on Linux 2.6.33+ - double check yours!

An Argument for Increasing TCP's initial Congestion window @igrigorik

https://developers.google.com/speed/articles/tcp_initcwnd_paper.pdf
https://developers.google.com/speed/articles/tcp_initcwnd_paper.pdf

Let's talk about HTTP 2.0 / SPDY

Yes, it's coming!

It's here!

SPDY is HTTP 2.0... sort of...

● HTTPBis Working Group met in Vancouver in late July
● Adopted SPDY v2 as starting point for HTTP 2.0

HTTP 2.0 Charter
1. Done Call for Proposals for HTTP/2.0
2. Nov 2012 First WG draft of HTTP/2.0, based upon draft-mbelshe-httpbis-spdy-00
3. Apr 2014 Working Group Last call for HTTP/2.0
4. Nov 2014 Submit HTTP/2.0 to IESG for consideration as a Proposed Standard

http://lists.w3.org/Archives/Public/ietf-http-wg/2012JulSep/0971.html @igrigorik

http://lists.w3.org/Archives/Public/ietf-http-wg/2012JulSep/0971.html
http://lists.w3.org/Archives/Public/ietf-http-wg/2012JulSep/0971.html

 It’s important to understand that SPDY isn’t being adopted as

HTTP/2.0; rather, that it’s the starting point of our
discussion, to avoid a laborious start from scratch.

- Mark Nottingham (chair)

It is expected that HTTP/2.0 will...

● Substantially and measurably improve end-user perceived latency over HTTP/1.1 using TCP
● Address the "head of line blocking" problem in HTTP
● Not require multiple connections to a server to enable parallelism, thus improving its use of TCP

● Retain the semantics of HTTP/1.1, including (but not limited to)
○ HTTP methods
○ Status Codes
○ URIs
○ Header fields

● Clearly define how HTTP/2.0 interacts with HTTP/1.x
○ especially in intermediaries (both 2->1 and 1->2)

● Clearly identify any new extensibility points and policy for their appropriate use

Make things better

Build on HTTP 1.1

Be extensible

@igrigorik

 ... we’re not replacing all of HTTP — the methods, status codes, and most of
the headers you use today will be the same. Instead, we’re re-defining how
it gets used “on the wire” so it’s more efficient, and so that it is more
gentle to the Internet itself

- Mark Nottingham (chair)

A litany of problems.. and "workarounds"...

1. Concatenating files
○ JavaScript, CSS
○ Less modular, large bundles

2. Spriting images
○ What a pain...

3. Domain sharding
○ Congestion control who? 30+ parallel requests --- Yeehaw!!!

4. Resource inlining
○ TCP connections are expensive!

5. ...

All due to flaws
in HTTP 1.1

@igrigorik

So, what's a developer to do?
Fix HTTP 1.1! Use SPDY in the meantime...

Control Frame:
+----------------------------------+
|C| Version(15bits) | Type(16bits) |
+----------------------------------+
| Flags (8) | Length (24 bits) |
+----------------------------------+
| Data |
+----------------------------------+

Data Frame:
+----------------------------------+
|D| Stream-ID (31bits) |
+----------------------------------+
| Flags (8) | Length (24 bits) |
+----------------------------------+
| Data |
+----------------------------------+

● One TCP connection
● Request = Stream

● Streams are multiplexed
● Streams are prioritized

● Binary framing
● Length-prefixed

● Control frames
● Data frames

SPDY in a Nutshell

@igrigorik

+----------------------------------+
|1| 2 | 1 |
+----------------------------------+
| Flags (8) | Length (24 bits) |
+----------------------------------+
|X| Stream-ID (31bits) |
+----------------------------------+
|X|Associated-To-Stream-ID (31bits)|
+----------------------------------+
| Pri | Unused | |
+------------------ |
| Name/value header block |

● Server SID: even
● Client SID: odd

● Associated-To: push *
● Priority: higher, better

● Length prefixed headers

*** Much of this may (will, probably) change

SYN_STREAM

Control

SPDY v2 SYN_STREAM

Request
Priority

Request
ID

 +------------------------------------+
 | Number of Name/Value pairs (int16) |
 +------------------------------------+
 | Length of name (int16) |
 +------------------------------------+
 | Name (string) |
 ...

@igrigorik

● Full request & response multiplexing
● Mechanism for request prioritization

● Many small files? No problem
● Higher TCP window size
● More efficient use of server resources
● TCP Fast-retransmit for faster recovery

Anti-patterns
● Domain sharding

○ Now we need to unshard - doh!

SPDY in action

client server

...

@igrigorik

curl -vv -d'{"msg":"oh hai"}' http://www.igvita.com/api

> POST /api HTTP/1.1

> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0)
libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5

> Host: www.igvita.com

> Accept: */*

> Content-Length: 16

> Content-Type: application/x-www-form-urlencoded

< HTTP/1.1 204

< Server: nginx/1.0.11

< Content-Type: text/html; charset=utf-8

< Via: HTTP/1.1 GWA

< Date: Thu, 20 Sep 2012 05:41:30 GMT

< Expires: Thu, 20 Sep 2012 05:41:30 GMT

< Cache-Control: max-age=0, no-cache

....

Speaking of HTTP Headers...

● Average request / response header
overhead: 800 bytes

● No compression for headers in HTTP!
● Huge overhead

● Solution: compress the headers!
○ gzip all the headers
○ header registry
○ connection-level vs. request-level

● Complication: intermediate proxies **

@igrigorik

Newsflash: we are already using "server push"
● Today, we call it "inlining"
● Inlining works for unique resources, bloats pages otherwise

SPDY Server Push

Premise: server can push resources to client
● Concern: but I don't want the data! Stop it!

○ Client can cancel SYN_STREAM if it doesn't the resource
● Resource goes into browsers cache (no client API)

Advanced use case: forward proxy (ala Amazon's Silk)
● Proxy has full knowledge of your cache, can intelligently push data to the client

@igrigorik

SPDY runs over TLS
● Philosophical reasons
● Political reasons
● Pragmatic + deployment reasons - Bing!

Encrypt all the things!!!

Observation: intermediate proxies get in the way
● Some do it intentionally, many unintentionally
● Ex: Antivirus / Packet Inspection / QoS / ...

SDHC / WebSocket: No TLS works.. in 80-90% of cases
● 10% of the time things fail for no discernable reason
● In practice, any large WS deployments run as WSS

@igrigorik

But isn't TLS slow?

CPU
 "On our production frontend machines, SSL/TLS accounts for

less than 1% of the CPU load, less than 10KB of memory per
connection and less than 2% of network overhead."

- Adam Langley (Google)

Latency
● TLS Next Protocol Negotiation

○ Protocol negotiation as part of TLS handshake
● TLS False Start

○ reduce the number of RTTS for full handshake from two to one
● TLS Fast Start

○ reduce the RTT to zero
● Session resume, ...

@igrigorik

https://technotes.googlecode.com/git/nextprotoneg.html
https://technotes.googlecode.com/git/nextprotoneg.html

● Chrome, since forever..
○ Chrome on Android + iOS

● Firefox 13+
● Opera 12.10+

Server
● mod_spdy (Apache)
● nginx
● Jetty, Netty
● node-spdy
● ...

Who supports SPDY?

3rd parties
● Twitter
● Wordpress
● Facebook*

● Akamai
● Contendo
● F5 SPDY Gateway
● Strangeloop
● ...

All Google properties
● Search, GMail, Docs
● GAE + SSL users
● ...

@igrigorik

● Q: Do I need to modify my site to work with SPDY / HTTP 2.0?
● A: No. But you can optimize for it.

● Q: How do I optimize the code for my site or app?
● A: "Unshard", stop worrying about silly things (like spriting, etc).

● Q: Any server optimizations?
● A: Yes!

○ CWND = 10
○ Check your SSL certificate chain (length)
○ TLS resume, terminate SSL connections closer to the user
○ Disable TCP slow start on idle

● Q: Sounds complicated...
● A: mod_spdy, nginx, GAE!

SPDY FAQ

@igrigorik

Mobile... oh mobile...
We still have a lot to learn when it comes to mobile

For many, mobile is the one
and only internet device

Country Mobile-only users

Egypt 70%

India 59%

South Africa 57%

Indonesia 44%

United States 25%

onDevice Research @igrigorik

Average RTT & downlink / uplink speeds

These numbers don't look that much different from the Sprint / Virgin latency numbers we saw earlier! Hmm...

Ouch!

@igrigorik

Mobile is a land of contradictions...

@igrigorik

We want point-to-point links But we broadcast to everyone via a shared channel

We want to pretend mobile networks are no different But the physical layer and delivery is completely different

We want "always on" radio performance But we want long battery life from our devices

We want ubiquitous coverage But we need to build smaller cells for high throughput

... ...

And the list goes on, and on, and on...

4G Network under the hood...

@igrigorik

It's complicated... and we don't
have all day. BUT, the point is,
we can't ignore it.

Designing a great mobile
applications requires that you
think about how to respect the
limits, restrictions (and
advantages) of a mobile device.

Mobile radio 101: 3G Radio Resource Control (RRC)

@igrigorik

● RRC state controlled
by the network

● Gateway schedules
your uplink &
downlink intervals

● Radio cycles between
3 power states

○ Idle
○ Low TX power
○ High TX power

Taming the mobile beast

http://cdn.oreillystatic.com/en/assets/1/event/79/Taming%20the%20Mobile%20Beast%20Presentation.pdf
http://cdn.oreillystatic.com/en/assets/1/event/79/Taming%20the%20Mobile%20Beast%20Presentation.pdf

Mobile radio 101: 4G Radio Resource Control (RRC)

@igrigorik

● Similar to 3G, but different

● Connected & Idle states
● DRX cycles change receive

timeouts

● 4G Goals
○ faster state transitions
○ aka, lower latency
○ better throughput

Mobile radio 101: 4G Radio Resource Control (RRC)

@igrigorik

● LTE median RTT is 70 ms
● Similar RTT profile to WiFi networks

Performance characteristics of 4G LTE Networks

http://web.eecs.umich.edu/~hjx/file/mobisys12_presentation.pdf
http://web.eecs.umich.edu/~hjx/file/mobisys12_presentation.pdf

Uh huh... Yeah, tell me more...

@igrigorik

1. Latency and variability are both very high on mobile networks

2. 4G networks will improve latency, but...
a. We still have a long way to go until everyone is on 4G
b. And 3G is definitely not going away anytime soon
c. Ergo, latency and variability in latency is your problem

3. What can we do about it?
a. Think back to TCP / SPDY...
b. Re-use connections, use pipelining
c. Download resources in bulk, avoid waking up the radio
d. Compress resources
e. Cache

The browser is trying to help you!
It is trying really hard... help it, help you!

(Chrome) Network Stack

An average page has grown to 1059 kB (over 1MB!) and is now composed of 80+ subresources.

● DNS prefetch - pre-resolve hostnames before we make the request
● TCP preconnect - establish connection before we make the request
● Pooling & re-use - leverage keep-alive, re-use existing connections (6 per host)
● Caching - fastest request is request not made (sizing, validation, eviction, etc)

Ex, Chrome learns subresource domains:

Chrome Networking: DNS Prefetch & TCP Preconnect @igrigorik

http://www.igvita.com/2012/06/04/chrome-networking-dns-prefetch-and-tcp-preconnect/
http://www.igvita.com/2012/06/04/chrome-networking-dns-prefetch-and-tcp-preconnect/

(Chrome) Network Stack

● chrome://predictors - omnibox predictor stats (check 'Filter zero confidences')
● chrome://net-internals#sockets - current socket pool status
● chrome://net-internals#dns - Chrome's in-memory DNS cache
● chrome://histograms/DNS - histograms of your DNS performance
● chrome://dns - startup prefetch list and subresource host cache

Chrome Networking: DNS Prefetch & TCP Preconnect

enum ResolutionMotivation {
 MOUSE_OVER_MOTIVATED, // Mouse-over link induced resolution.
 PAGE_SCAN_MOTIVATED, // Scan of rendered page induced resolution.
 LINKED_MAX_MOTIVATED, // enum demarkation above motivation from links.
 OMNIBOX_MOTIVATED, // Omni-box suggested resolving this.
 STARTUP_LIST_MOTIVATED, // Startup list caused this resolution.
 EARLY_LOAD_MOTIVATED, // In some cases we use the prefetcher to warm up the connection
 STATIC_REFERAL_MOTIVATED, // External database suggested this resolution.
 LEARNED_REFERAL_MOTIVATED, // Prior navigation taught us this resolution.
 SELF_REFERAL_MOTIVATED, // Guess about need for a second connection.
 // ...
};

@igrigorik

http://www.igvita.com/2012/06/04/chrome-networking-dns-prefetch-and-tcp-preconnect/
http://www.igvita.com/2012/06/04/chrome-networking-dns-prefetch-and-tcp-preconnect/

Navigation Timing (W3C)

Navigation Timing spec @igrigorik

http://test.w3.org/webperf/specs/NavigationTiming/
http://test.w3.org/webperf/specs/NavigationTiming/

Navigation Timing (W3C)

@igrigorik

Available in...

● IE 9+
● Firefox 7+
● Chrome 6+
● Android 4.0+

@igrigorik

 <script>
 _gaq.push(['_setAccount','UA-XXXX-X']);
 _gaq.push(['_setSiteSpeedSampleRate', 100]); // #protip
 _gaq.push(['_trackPageview']);
 </script>

Google Analytics > Content > Site Speed

● Automagically collects this data for you - defaults to 1% sampling rate
● Maximum sample is 10k visits/day
● You can set custom sampling rate

You have all the power of Google Analytics! Segments, conversion metrics, ...

Real User Measurement (RUM) with Google Analytics

setSiteSpeedSampleRate docs @igrigorik

https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_gat.GA_Tracker_._setSiteSpeedSampleRate
https://developers.google.com/analytics/devguides/collection/gajs/methods/gaJSApiBasicConfiguration#_gat.GA_Tracker_._setSiteSpeedSampleRate

Performance
data from real
users, on real
networks

@igrigorik

Full power of GA to
segment, filter,
compare, ...

@igrigorik

Head into the Technical
reports to see the histograms
and distributions!

But don't trust the averages...

@igrigorik

Content > Site Speed > Page Timings > Performance

Migrated site to new host, server stack, web layout, and using static
generation. Result: noticeable shift in the user page load time distribution.

Case study: igvita.com page load times

Measuring Site Speed with Navigation Timing @igrigorik

http://www.igvita.com/2012/04/04/measuring-site-speed-with-navigation-timing/
http://www.igvita.com/2012/04/04/measuring-site-speed-with-navigation-timing/

Content > Site Speed > Page Timings > Performance

Bimodal response time distribution?
Theory: user cache vs. database cache vs. full recompute

Case study: igvita.com server response times

Measuring Site Speed with Navigation Timing @igrigorik

http://www.igvita.com/2012/04/04/measuring-site-speed-with-navigation-timing/
http://www.igvita.com/2012/04/04/measuring-site-speed-with-navigation-timing/

Measure, analyze, optimize, repeat...

1. Measure user perceived latency
2. Leverage Navigation Timing data
3. Use GA's advanced segments (or similar solution)
4. Setup {daily, weekly, ...} reports

How do we render the page?
we're getting bytes off the wire... and then what?

Life of a web-page in WebKit

How WebKit works - Adam Barth

Network

Resource Loader

HTML Parser

DOM Script

Render Tree

CSS

Graphics Context

1. Fetch resources from the network
2. Parse, tokenize, construct the OM

a. Scripts...
3. Output to the screen

@igrigorik

https://docs.google.com/presentation/pub?id=1ZRIQbUKw9Tf077odCh66OrrwRIVNLvI_nhLm2Gi__F0#slide=id.g312aaaf6_1_188
https://docs.google.com/presentation/pub?id=1ZRIQbUKw9Tf077odCh66OrrwRIVNLvI_nhLm2Gi__F0#slide=id.g312aaaf6_1_188

The HTML(5) parser at work...

How WebKit works - Adam Barth

Tokenizer

TreeBuilder

Bytes

Characters

Tokens

Nodes

DOM

<body>Hello, world!</body>

StartTag: body Hello, StartTag: span world! EndTag: span

body Hello, span world!

body

Hello, span

world!

3C 62 6F 64 79 3E 48 65 6C 6C 6F 2C 20 3C 73 70 61 6E 3E 77 6F 72 6C 64 21 3C 2F 73 70 61 6E
3E 3C 2F 62 6F 64 79 3E

DOM is constructed incrementally, as
the bytes arrive on the "wire".

@igrigorik

https://docs.google.com/presentation/pub?id=1ZRIQbUKw9Tf077odCh66OrrwRIVNLvI_nhLm2Gi__F0#slide=id.g312aaaf6_1_188
https://docs.google.com/presentation/pub?id=1ZRIQbUKw9Tf077odCh66OrrwRIVNLvI_nhLm2Gi__F0#slide=id.g312aaaf6_1_188

The HTML(5) parser at work...

<!doctype html>
<meta charset=utf-8>
<title>Awesome HTML5 page</title>

<script src=application.js></script>
<link href=styles.css rel=stylesheet />

<p>I'm awesome.

HTMLDocumentParser begins parsing the received data ...

HTML
 - HEAD
 - META charset="utf-8"
 - TITLE
 #text: Awesome HTML5 page
 - SCRIPT src="application.js"
 ** stop **

Stop. Dispatch request for application.js. Wait...

@igrigorik

<script> could doc.write, stop the world!
script "async" and "defer" are your escape clauses

Sync scripts block the parser...

 Mary had a little lamb Tokenizer TreeBuilder

document.write("<textarea>");

Script execution can change the input stream. Hence we must wait.

@igrigorik

Sync scripts block the parser...

 <script type="text/javascript" src="https://apis.google.com/js/plusone.js"></script>

<script type="text/javascript">

 (function() {

 var po = document.createElement('script'); po.type = 'text/javascript';

 po.async = true; po.src = 'https://apis.google.com/js/plusone.js';

 var s = document.getElementsByTagName('script')[0];

 s.parentNode.insertBefore(po, s);

 })();

</script>

Sync script will block the rendering of your page:

Async script will not block the rendering of your page:

@igrigorik

async vs. defer

<script src="file-a.js"></script>
<script src="file-b.js" defer></script>
<script src="file-c.js" async></script>

● regular - wait for request, execute, proceed
● defer - download in background, execute in order before DomContentLoaded
● async - download in background, execute when ready

async and defer explained @igrigorik

http://peter.sh/experiments/asynchronous-and-deferred-javascript-execution-explained/
http://peter.sh/experiments/asynchronous-and-deferred-javascript-execution-explained/

Browser tries to help.. Preload Scanner to the rescue!

if (isWaitingForScripts()) {
 ASSERT(m_tokenizer->state() == HTMLTokenizerState::DataState);
 if (!m_preloadScanner) {
 m_preloadScanner = adoptPtr(new HTMLPreloadScanner(document()));
 m_preloadScanner->appendToEnd(m_input.current());
 }
 m_preloadScanner->scan();
}

HTMLPreloadScanner tokenizes ahead, looking for blocking resources...

if (m_tagName != imgTag
 && m_tagName != inputTag
 && m_tagName != linkTag
 && m_tagName != scriptTag
 && m_tagName != baseTag)
 return;

@igrigorik

Flush early, flush often...

Early flush example: https://gist.github.com/3058839

● Time to first byte (TTFB) matters when you can deliver useful data in those first bytes!
● Example: flush the header of your page before the rest of your body to kick off resource fetch!

● Network stack can run DNS prefetch & TCP-preconnect
● PreloadScanner can fetch resources while parser is blocked

@igrigorik

https://gist.github.com/3058839

Let the browser help you...

● Flush early, flush often, flush smart
● Time to first packet matters when...
● Content of first packet can tip-off the parser

● Try not to hide resources from the parser!
● CSSPreloadScanner scans for @import's only

@igrigorik

Let's build a Render tree
Or, maybe an entire forest?

DOM + CSSOM > Render Tree(s)

● Some trees share objects
● Independently constructed, not 1:1 match
● Lazy evaluation - defer to just before we need to render!

@igrigorik

DOM + CSSOM > Render Tree(s)

Querying layout (ex, offset{Width,Height}), forces a full layout flush!

@igrigorik

"60 FPS? That's for games and stuff, right?"

Wrong. 60 FPS applies to web pages as well!

What are we painting? How much?

● Enable "show paint rectangles" to see painted areas
● Check timeline to see time taken, memory usage, dimensions, and more...
● Minimize the paint areas whenever possible

@igrigorikWait, DevTools could do THAT?

http://bit.ly/devtools-tips
http://bit.ly/devtools-tips

How much time did each frame take?

● 60 FPS affords you a 16.6 ms budget per frame
● StdBannerEx.js is executing 20 ms+ of JavaScript on every scroll event ... <facepalm />
● It's better to be at consistent than jump between variable frame-rates

Scroll

Google I/O 2012 - Jank Busters: Building Performant Web Apps @igrigorik

http://www.youtube.com/watch?v=hAzhayTnhEI
http://www.youtube.com/watch?v=hAzhayTnhEI

How much time did each frame take?

Jank demo (open Timeline, hit record, and err.. enjoy)

● CSS effects can cause slow(er) paints
● Style recalculations can cause slow(er) paints
● Excessive Javascript can cause slow(er) paints

Wait, DevTools could do THAT? @igrigorik

http://www.igvita.com/slides/2012/devtools-tips-and-tricks/jank-demo.html
http://www.igvita.com/slides/2012/devtools-tips-and-tricks/jank-demo.html
http://bit.ly/devtools-tips
http://bit.ly/devtools-tips

Hardware Acceleration 101

● A RenderLayer can have a GPU backing store
● Certain elements are GPU backed automatically (canvas, video, CSS3 animations, ...)
● Forcing a GPU layer: -webkit-transform:translateZ(0)
● GPU is really fast at compositing, matrix operations and alpha blends

@igrigorik

Hardware Acceleration 101

1. The object is painted to a buffer (texture)
2. Texture is uploaded to GPU
3. Send commands to GPU: apply op X to texture Y

● Minimize CPU-GPU interactions
● Texture uploads are not free
● No upload: position, size, opacity
● Texture upload: everything else

CSS3 Animations are as close to "free lunch" as you can get **

** Assuming no texture reuploads and animation runs entirely on GPU... @igrigorik

CSS3 Animations with no Javascript!

 <style>
 .spin:hover {
 -webkit-animation: spin 2s infinite linear;
 }

 @-webkit-keyframes spin {
 0% { -webkit-transform: rotate(0deg);}
 100% { -webkit-transform: rotate(360deg);}
 }
 </style>

 <div class="spin" style="background-image: url(images/chrome-logo.png);"></div>

● Look ma, no JavaScript!
● Performance: YMMV, but improving rapidly

@igrigorik

DOM, CSSOM & Javascript sitting in a tree...

There is an interesting dependency graph in here...

(1) Scripts can block the document parser...

 Mary had a little lamb Tokenizer DOM TreeBuilder

document.write("<textarea>");

JavaScript can block the DOM construction.

Script execution can change the input stream. Hence we must wait.

@igrigorik

(2) Javascript can query CSS, which means...

JavaScript can block on CSS.

DOM construction can be blocked on Javascript, which can be blocked on CSS
○ ex: asking for computed style, but stylesheet is not yet ready...

Javascript

At least CSS can't query javascript.. phew! @igrigorik

(3) Rendering is blocked on CSS...

CSS must be fetched & parsed before Render tree can be painted.

Otherwise, the user will see "flash of unstyled content" + reflow and repaint when CSS is
ready

Javascript

At least CSS can't query javascript.. phew! @igrigorik

Putting it all together...

(1) JavaScript can block the DOM construction
(2) JavaScript can block on CSS
(3) Rendering is blocked on CSS...

Which means...

(1) Get CSS down to the client as fast as you can
○ Unblocks paints, removes potential JS waiting on CSS scenario

(2) If you can, use async scripts + avoid doc.write at all costs
○ Faster DOM construction, faster DCL and paint!

Now let's try a fabricated example...

Doesn't mean it's an easy one!

What could be simpler...

 <html>
 <body>
 <link rel="stylesheet" href="example.css">

 <div>Hi there!</div>

 <script>
 document.write('<script src="other.js"></scr' + 'ipt>');
 </script>

 <div>Hi again!</div>

 <script src="last.js"></script>
 </body>
 </html>

Understanding and Optimizing Web Performance Metrics - Bryan McQuade

https://perf-metrics-velocity2012.appspot.com/#1
https://perf-metrics-velocity2012.appspot.com/#1

Actually, it's not simple, at all...
 <html>
 <body>
 <link rel="stylesheet" href="example.css">

 <div>Hi there!</div>

 <script>...

Understanding and Optimizing Web Performance Metrics - Bryan McQuade

● Parser discovers example.css and fetches it from the network
● Parser continues without blocking on fetch of example.css

● Parser reaches start of inline script block
○ Can't execute because it's blocked on pending stylesheet

● Render tree construction also blocked on stylesheet, so no paint requested
● Preload scanner looks ahead in the document, initiates fetch for last.js

@igrigorik

https://perf-metrics-velocity2012.appspot.com/#1
https://perf-metrics-velocity2012.appspot.com/#1

Actually, it's not simple, at all...
 <html>
 <body>
 <link rel="stylesheet" href="example.css">

 <div>Hi there!</div>

 <script>
 document.write('<script src="other.js"></scr' + 'ipt>');
 </script>

Understanding and Optimizing Web Performance Metrics - Bryan McQuade

● Once example.css finishes loading, render tree is constructed
● After inline script block executes, parser is immediately blocked on other.js

○ Preloader is of no help here, since other.js is scheduled via JS

● Once parser is blocked, first paint is requested and "Hi there!" is painted to the
screen

@igrigorik

https://perf-metrics-velocity2012.appspot.com/#1
https://perf-metrics-velocity2012.appspot.com/#1

Actually, it's not simple, at all...

Understanding and Optimizing Web Performance Metrics - Bryan McQuade

● Parser discovers last.js, which, thanks to the speculative loader, is in the browser cache
○ last.js is executed immediately

● Paint is requested and "Hi again!" is painted to the screen
● Done

 <html>
 <body>
 <link rel="stylesheet" href="example.css">

 <div>Hi there!</div>

 <script>
 document.write('<script src="other.js"></scr' + 'ipt>');
 </script>

 <div>Hi again!</div>

 <script src="last.js"></script>
 </body>
 </html>

@igrigorik

https://perf-metrics-velocity2012.appspot.com/#1
https://perf-metrics-velocity2012.appspot.com/#1

Not to repeat myself, but ...

Javascript

(1) Get CSS down to the client as fast as you can
○ Unblocks paints, removes potential JS waiting on CSS scenario

(2) If you can, use async scripts + avoid doc.write at all costs
○ Faster DOM construction, faster DCL and paint!

@igrigorik

OK. Let's try a real-life example...
and apply what we've learned so far!

guardian.co.uk

Full Waterfall

Critical Path

Critical Path Explorer extracts the
subtree of the waterfall that is in the
"critical path" of the document
parser and the renderer.

(automation for the win!)

@igrigorik

https://developers.google.com/speed/pagespeed/insights

300 ms redirect!

@igrigorik

300 ms redirect!

JS execution
blocked on CSS

@igrigorik

300 ms redirect!

JS execution
blocked on CSS

doc.write() some
JavaScript - doh!

@igrigorik

300 ms redirect!

JS execution
blocked on CSS

doc.write() some
JavaScript - doh!

long-running JS

@igrigorik

@igrigorik bit.ly/perfloop

● 159 requests
● 844.13 KB transferred

● DomContentLoaded: 1.99s
● onload: 3.11s

Critical Path
● 23 requests
● 300 ms in redirect latency
● 5 CSS files, mostly Javascript

Optimizing the page...
● Can we eliminate the redirect? Cache it?
● Can we reduce the overall size?
● Can we make fewer requests?
● Can we defer some of the Javascript?
● Can we combine some of the assets?

http://bit.ly/perfloop

@igrigorik bit.ly/perfloop

Looks like we can remove ~75kb of data through better image compression!

Analyzing PageSpeed extension...

http://bit.ly/perfloop
https://chrome.google.com/webstore/detail/pagespeed-insights-by-goo/gplegfbjlmmehdoakndmohflojccocli

Hmmm... Resizing from 900x250 to 0x0? Well, that's creative...

Analyzing PageSpeed extension...

https://chrome.google.com/webstore/detail/pagespeed-insights-by-goo/gplegfbjlmmehdoakndmohflojccocli

Looks like some of the Javascript assets are not being compressed! Another 53kb...

Analyzing PageSpeed extension...

https://chrome.google.com/webstore/detail/pagespeed-insights-by-goo/gplegfbjlmmehdoakndmohflojccocli

And more... #protip: try PageSpeed Insights.

And try Critical Path Explorer in the online version...

https://chrome.google.com/webstore/detail/pagespeed-insights-by-goo/gplegfbjlmmehdoakndmohflojccocli

Performance Best Practices
Yo dawg, I heard you like top {N} lists...

Performance best practices, in context...

● Reduce DNS lookups
○ 130 ms average lookup time! Even slower on mobile..

● Avoid redirects
○ Often results in new handshake (and maybe even DNS)

● Make fewer HTTP requests
○ No request is faster than no request

● Flushing the document early
○ Help document parser discover external resources early!

● Use a CDN
○ Faster RTT == faster page loads
○ Also, terminate SSL closer to the user!

Reduce the size of your pages!

● GZIP your (text) assets
○ ~80% compression ratio for text

● Optimize images, pick optimal format
○ ~60% of total size of an average page!

● Add an Expires header
○ No request is faster than no request

● Add ETags
○ Conditional checks to avoid fetching duplicate content

Optimize for fast first paint, don't block the parser!

● Place stylesheets at the top
○ Rendered, and potentially DOM construction, is blocked on CSS!

● Load scripts asynchronously, whenever possible
○ Sync scripts block the document parser

● Place scripts at the bottom
○ "Unblocks" the document parser (since there is nothing to block)

● Minify, concatenate
○ Remove redundant libraries & markup
○ Concatenate files to reduce number of HTTP requests

Hunt down & eliminate jank and memory leaks!

● Build buttery smooth pages (scroll included)
○ 60 FPS means 16.6 ms budget per frame
○ Use frames view to hunt down and eliminate jank

● Leverage hardware acceleration where possible
○ Let the GPU do what it's good at: alpha, translations
○ Avoid excessive CPU > GPU interaction

● Eliminate JS and DOM memory leaks
○ Monitor and diff heap usage to identify memory leaks

● Test on mobile devices
○ Emulators won't show you true performance on the device

Use (and learn) the right tools for the job

● Learn about Developer Tools
○ Spend some time reading the docs, follow tutorials

■ http://bit.ly/devtools-tips
● PageSpeed Insights

○ Install the browser extension for quick diagnostics
○ Leverage Critical Path Explorer to identify the... critical path!

● WebPageTest.org
○ Test your pages against multiple browsers
○ Test performance, not just UX acceptance!

● Test on mobile devices
○ Test with real mobile networks to get a feel for the differences

http://bit.ly/devtools-tips
http://bit.ly/devtools-tips

● Treat performance as a business metric, not a technical one
● Map Real User Measurement metrics to business outcomes

● Web performance & optimization is a process, not a checklist
● You should design with web performance in mind

● Always ask "why", don't just follow a checklist

Slides @ bit.ly/webperf-crash-course

Twitter @igrigorik
 G+ gplus.to/igrigorik
 Web igvita.com

zomg, you made it.

http://twitter.com/igrigorik
http://gplus.to/igrigorik
http://www.igvita.com/

