
WebRTC

Structural and Sampling JavaScript Profiling
in Google Chrome

1. Sampling
a. Measures samples

2. Structural
a. Measures time
b. aka, instrumenting / markers / inline

Sampling CPU Profilers

At a fixed frequency:

Instantaneously pause the program and sample the call stack

 function foo() {

 bar();

 }

 function bar() {

 }

 foo();

SAMPLE 0: bar

1: foo

2: program

???
???
???

???
???
???

???
???
???

Sampling CPU Profilers

Assumption: our sample is representative of the workload

● data sampled on a 1 ms interval in Chrome
● collect data for longer period of time
● ensure that your code is exercising the right code-paths

1ms

Samples are processed and outputs two data points per function:

1. Percentage of samples function was leaf of a call stack
a. Analogous to exclusive time

2. Percentage of samples function was present in call stack
a. Analogous to inclusive time

Sampling CPU Profilers

0: bar

1: foo

2: program

exclusive

inclusive

 function foo() {

 bar();

 }

 function bar() {

 }

 foo();

SAMPLE

Functions are instrumented to record entry and exit times.

Buffer

Enter Foo #TS0

Enter Bar #TS1

Exit Bar #TS2

Exit Foo #TS3

Structural CPU Profilers

 function foo() {

 bar();

 }

 function bar() {

 }

 foo();

Structural execution trace

Buffer is processed and outputs three data points per function:

1. Inclusive Time
a. Time function was running for including time spent inside children.

2. Exclusive Time
a. Time function was running for excluding time spent inside children.

3. Call Count
a. Number of times the function was called.

Structural CPU Profilers

Buffer

Enter Foo #TS0

Enter Bar #TS1

Exit Bar #TS2

Exit Foo #TS3

Structural
execution trace

aka, including time spent inside children

 JavaScript optimization: the quest to
minimize the inclusive time of a
function. *

● Instrumenting profilers requires that you.. instrument your code:
○ Fine-grained control over what is being traced, but requires that you know what to trace
○ Platform code / API's out of reach

● Sampling profilers require no instrumentation, but:
○ Are an approximation of what is happening in your application
○ May miss or hide some code-paths

Which should I use? ... Both!

P.S. It's not either, or... you need both!

Sampling Structural / Instrumenting

Time Approximate Exact

Invocation count Approximate Exact

Overhead Small High(er)

Accuracy *** Good - Poor Good - Poor

Extra code / instrumentation No Yes

Sampling CPU Profiling in Chrome

Built-in sampling CPU profiler in ... Profiles tab in Developer Tools!
● instantaneously pauses your code and samples the call stack

Sampling CPU profiling in Chrome

Demo: V8 Benchmark Suite

● Heavy (bottom up view): functions by impact on performance + ability to examine the calling paths to each
● Tree (top down view): overall picture of the calling structure, starting at the top of the call stack
● Use "Focus selected function" to zero in on just the code you care about

Chrome Developer Tools: CPU Profiling

http://v8.googlecode.com/svn/data/benchmarks/v7/run.html
https://developers.google.com/chrome-developer-tools/docs/cpu-profiling
https://developers.google.com/chrome-developer-tools/docs/cpu-profiling

Structural CPU Profiling in Chrome

chrome://tracing is a power user structural profiler
● built for intrusive profiling of Chrome's internals
● most of this can and should be hidden for JavaScript profiling

1. You* must instrument your JavaScript code.

How to use chrome://tracing to profile JavaScript...

WARNING: console.time and console.timeEnd spam the developer tools console. Keep it closed.

 function foo() {

 console.time("foo");

 bar();

 console.timeEnd("foo");

 }

 function bar() {

 console.time("bar");

 console.timeEnd("bar");

 }

 foo();

Some types of instrumentation:
● Manual
● Compiler / automatic tool
● Runtime instrumentation (ex. Valgrind)

"Trace macros are very low overhead. When tracing is not
turned on, trace macros cost at most a few dozen
clocks. When running, trace macros cost a few thousand
clocks at most.

Arguments to the trace macro are evaluated only when
tracing is on --- if tracing is off, the value of the arguments
don't get computed."

How to use chrome://tracing to profile JavaScript...

2. Start recording a trace

3. Interact with your application...
4. Head back, hit stop tracing

Record on the order of a few to dozens of seconds of profiling data...

5. Behold the noise!

How to use chrome://tracing to profile JavaScript...

How to use chrome://tracing to profile JavaScript...

6. Find your page's process ID in chrome://memory

24454

7. Filter for the signal

● remove unnecessary threads and components
● click on "Categories" in top right, and filter down the list

How to use chrome://tracing to profile JavaScript...

8. Inspect the trace timeline, isolate your code...

How to use chrome://tracing to profile JavaScript...

 V8
execution

 W
 A S D

Remember your Quake keys?

A - pan left
D - pan right
W - zoom in
S - zoom out

? - help

Let's do a walkthrough...

Hands on profiling...

function gameloop(timestamp) {

 A();

 requestAnimationFrame(gameloop);

}

function A() {

 spinFor(2); // loop for 2 ms

 B(); // Calls C

}

...

function D() {

 // Called by C

 spinFor(2); // loop for 2 ms

}

Function Exclusive Run Time

A() 2 ms

B() 8 ms

C() 1 ms

D() 2 ms

Total 13 ms

Let's assume the following scenario, with known exclusive run times...

Where is A(), B(), and C()?

spinFor() is only in 0.96 % of the samples?!

Hands on profiling...

Open up Profiles tab in Developer Tools, hit start, record, stop...

<facepalm>

 A(), B(), C(), and spinFor() were optimized and ultimately inlined into gameloop!
</facepalm>

Inlining is a common compiler optimization

function gameloop(timestamp) {

 var x = 0;

 for (int i = 0; i < 10; i++) {

 x = A(x);

 }

}

function A(x) {

 return x + x;

}

function gameloop(timestamp) {

 var x = 0;

 for (int i = 0; i < 10; i++) {

 x = x + x;

 }

}

A() is erased when inlined into gameloop. Erased functions cannot show up in sampling profiler capture.

 ... Code in V8 != code in your source

Performance tips for JavaScript in V8 - Chris Wilson

http://www.html5rocks.com/en/tutorials/speed/v8/
http://www.html5rocks.com/en/tutorials/speed/v8/

Chrome Developer Tools (Sampling) Profiler

This trace does not resemble the
application's actual execution flow or
execution time.

That's not to say that the sampling profiler is useless - to the contrary!

function A() {
 console.time("A");
 spinFor(2); // loop for 2 ms
 B(); // Calls C
 console.timeEnd("A");
}

...

function D() {
 // Called by C
 console.time("D");
 spinFor(2); // loop for 2 ms
 console.timeEnd("D");
}

Hands on profiling...

Let's instrument our code with
structural markers to help trace the
actual execution path

P.S. The functions can still be inlined,
but so will our console statements!

If you're wondering... there is ~0.01 ms of overhead per console call

Function Entry Time Exit Time Inclusive Runtime Exclusive Runtime

A() 0 ms 13 ms 13 ms 2 ms

B() 2 ms 13 ms 11 ms 8 ms

C() 10 ms 13 ms 3 ms 1 ms

D() 11 ms 13 ms 2 ms 2 ms

Let's zoom in on the execution trace in chrome://tracing...

Sampling Profiler (Dev Tools)
○ (in this case) did not present a clear picture of program execution flow or timings

Structural Profiler (chrome://tracing)
○ Clearly showed program execution flow and timings
○ Required additional instrumentation

Hands on profiling conclusions...

Real-world profiling workflow

Realize JavaScript is running slow

Use sampling profiler to determine
where to add instrumentation

Instrument and capture a trace

Optimize slowest region of code

1

2

3

Rinse, lather, repeat...

A few closing tips...

● start with the sampling profiler...

● learn the navigation keys (WASD) for chrome://tracing

● filter down the recorded trace to process ID you care about

● console.{time, timeEnd} pairs can cross function boundaries
○ Start with a large area of code and narrow with a binary search!

● Recall that V8 code != your source code
○ That is, it's not necessarily the same...

● You can save & load both types of profiling runs
○ Attach them to your tickets, save for later, etc.

Think about the data being processed...

○ Is one piece of data slower to process than the others?
○ Experiment with naming time ranges based on data name

VS

Planning for performance: allocate and follow a budget!!!

● Budget
○ Each module of your application should have a time budget
○ Sum of all modules should be less than 16 ms for smooth apps

● Track performance data daily (per commit?)
○ Catch Budget Busters right away

Oh, and one more thing...
Demo: determining frame rate in chrome://tracing

Questions!

http://goo.gl/OSYJo

